scholarly journals Exploring the utility of radar and satellite-sensed precipitation and their dynamic bias correction for integrated prediction of flood and landslide hazards

2021 ◽  
Vol 603 ◽  
pp. 126964
Author(s):  
Sheng Wang ◽  
Ke Zhang ◽  
Lijun Chao ◽  
Donghuan Li ◽  
Xin Tian ◽  
...  
2020 ◽  
Vol 12 (19) ◽  
pp. 3160
Author(s):  
Yan Zhou ◽  
Christopher Grassotti

We present the development of a dynamic over-ocean radiometric bias correction for the Microwave Integrated Retrieval System (MiRS) which accounts for spatial, temporal, spectral, and angular dependence of the systematic differences between observed and forward model-simulated radiances. The dynamic bias correction, which utilizes a deep neural network approach, is designed to incorporate dependence on the atmospheric and surface conditions that impact forward model biases. The approach utilizes collocations of observed Suomi National Polar-orbiting Partnership/Advanced Technology Microwave Sounder (SNPP/ATMS) radiances and European Centre for Medium-Range Weather Forecasts (ECMWF) model analyses which are used as input to the Community Radiative Transfer Model (CRTM) forward model to develop training data of radiometric biases. Analysis of the neural network performance indicates that in many channels, the dynamic bias is able to reproduce realistically both the spatial patterns of the original bias and its probability distribution function. Furthermore, retrieval impact experiments on independent data show that, compared with the baseline static bias correction, using the dynamic bias correction can improve temperature and water vapor profile retrievals, particularly in regions with higher Cloud Liquid Water (CLW) amounts. Ocean surface emissivity retrievals are also improved, for example at 23.8 GHz, showing an increase in correlation from 0.59 to 0.67 and a reduction of standard deviation from 0.035 to 0.026.


2019 ◽  
Vol 19 (11) ◽  
pp. 2477-2495
Author(s):  
Ronda Strauch ◽  
Erkan Istanbulluoglu ◽  
Jon Riedel

Abstract. We developed a new approach for mapping landslide hazards by combining probabilities of landslide impacts derived from a data-driven statistical approach and a physically based model of shallow landsliding. Our statistical approach integrates the influence of seven site attributes (SAs) on observed landslides using a frequency ratio (FR) method. Influential attributes and resulting susceptibility maps depend on the observations of landslides considered: all types of landslides, debris avalanches only, or source areas of debris avalanches. These observational datasets reflect the detection of different landslide processes or components, which relate to different landslide-inducing factors. For each landslide dataset, a stability index (SI) is calculated as a multiplicative result of the frequency ratios for all attributes and is mapped across our study domain in the North Cascades National Park Complex (NOCA), Washington, USA. A continuous function is developed to relate local SI values to landslide probability based on a ratio of landslide and non-landslide grid cells. The empirical model probability derived from the debris avalanche source area dataset is combined probabilistically with a previously developed physically based probabilistic model. A two-dimensional binning method employs empirical and physically based probabilities as indices and calculates a joint probability of landsliding at the intersections of probability bins. A ratio of the joint probability and the physically based model bin probability is used as a weight to adjust the original physically based probability at each grid cell given empirical evidence. The resulting integrated probability of landslide initiation hazard includes mechanisms not captured by the infinite-slope stability model alone. Improvements in distinguishing potentially unstable areas with the proposed integrated model are statistically quantified. We provide multiple landslide hazard maps that land managers can use for planning and decision-making, as well as for educating the public about hazards from landslides in this remote high-relief terrain.


Sign in / Sign up

Export Citation Format

Share Document