Dual‐domain model of advective‐diffusion transport with variable mass transfer rate for long-term contaminant transport simulation at radwaste injection site

2021 ◽  
pp. 127410
Author(s):  
S.P. Pozdniakov ◽  
V.A. Lekhov ◽  
V.A. Bakshevskaia
2004 ◽  
Vol 194 ◽  
pp. 235-235
Author(s):  
A. Dobrotka ◽  
L. Hric ◽  
K. Petrík

The big scatter of data on the light curve of T CRB is identified with the flickering activity of the system. The data performed during April 1996 have a falling trend and they can be a part of a downward branch of a long-term and energetically powerful flare. Estimated energy 2 1035 J and the duration of this event were compared with the theoretical assumptions based on three typical physical scenarios, which can be the source of flickering. The dissipation of magnetic loops and the existence of the turbulent eddies are energetically deficient, but these scenarios are real in the case of less powerfull flares. The real explanation could be the instability of the secondary and variable mass transfer rate through the Lagrangian point, therefore through whole disc.


2004 ◽  
Vol 194 ◽  
pp. 169-171
Author(s):  
Gaghik H. Tovmassian ◽  
Sergei V. Zharikov

AbstractWe discovered that the short period cataclysmic variable FS Aur at some epochs shows a photometric period close to the orbital. It exceeds the orbital period by ∽2%, which is a sign of the presence of a permanent superhump in the system. Superhumps tend to appear near short, low amplitude outbursts. We assume that FS Aur possesses a large thermally stable accretion disc and that the outburst may be due to the variable mass transfer rate. This, however, does not alter our previous explanation of yet another, 2.4 times longer than orbital, photometric period of FS Aur, found earlier, and persistently observed in its light curves.


1996 ◽  
Vol 158 ◽  
pp. 447-448
Author(s):  
K. Schenker ◽  
U. Kolb ◽  
H. Ritter

AbstractWe present calculations of the long-term evolution of CVs which include the influence of nova outbursts. In particular we investigate the consequences of the discontinuous mass loss due to recurring outburst events and the effects of frictional angular momentum loss (FAML), i.e. the interaction of the expanding nova envelope with the secondary. We show that a description assuming continuous mass loss – averaged over a complete nova cycle – is applicable for determining the mean mass transfer rate and the secular evolution both with and without FAML. Between two subsequent outbursts, deviations from the mean evolution depend on the strength of FAML and on the mass ejected during the outburst. Formally FAML is a consequential angular momentum loss [1] and therefore increases the mean mass transfer rate by pushing the systems closer to mass transfer instability. Depending on the actual strenghth of FAML the long-term evolution of CVs could be significantly different from the standard model predictions.


2019 ◽  
Vol 488 (1) ◽  
pp. 1026-1034 ◽  
Author(s):  
Andrzej A Zdziarski ◽  
Janusz Ziółkowski ◽  
Joanna Mikołajewska

ABSTRACT We consider constraints on the distance, inclination, and component masses in the X-ray binary GX 339–4 resulting from published works, and then construct detailed evolutionary models for the donor. From both considerations, and assuming the black hole nature for the compact object (i.e. its mass ${\gt} 3\, \rm {M}_{\odot }$), the possible donor mass is ≈0.5–$1.4\, \rm {M}_{\odot }$, the inclination is ≈40°–60°, and the distance is ≈8–12 kpc. The corresponding mass of the compact object is ≈4–$11\, \rm {M}_{\odot }$. We then confirm a previous estimate that the theoretical conservative mass transfer rate in GX 339–4 is ${\lesssim} {10^{-9}}\, {\rm M}_{{\odot} }$ yr−1. This is ≳10 times lower than the average mass accretion rate estimated from the long-term X-ray light curve. We show that this discrepancy can be solved in two ways. One solution invokes irradiation of the donor by X-rays from accretion, which can temporarily enhance the mass transfer rate. We found that absorption of a ∼1 per cent of the irradiating luminosity results in the transfer rate equal to the accretion rate. The time-scale at which the transfer rate will vary is estimated to be ∼10 yr, which appears consistent with the observations. The other solution invokes non-conservative mass transfer. This requires that ≈70 per cent of the transferred mass escapes as a strong outflow and carries away the specific angular momentum comparable to that of the donor.


1990 ◽  
Vol 122 ◽  
pp. 13-23
Author(s):  
A. Bianchini

AbstractQuiescent novae are more stable against mass transfer rate than dwarf novae. They may however show cyclical variations of their quiescent magnitudes on time scales of years, probably caused by solar–type cycles of activity of the secondary. The probability density function of the periods of the cycles observed in CVs is similar to that for single stars. Sometimes, periodic or quasi periodic light variations on time scales of tens to hundreds of days are also observed. Although the magnitudes of prenovae and postnovae are essentially the same, the definition of the magnitude of a quiescent nova is still uncertain. At present, the hibernation theory for old novae seems to be supported only by the observations of two very old novae.


2003 ◽  
Vol 68 (11) ◽  
pp. 2080-2092 ◽  
Author(s):  
Martin Keppert ◽  
Josef Krýsa ◽  
Anthony A. Wragg

The limiting diffusion current technique was used for investigation of free convective mass transfer at down-pointing up-facing isosceles triangular surfaces of varying length and inclination. As the mass transfer process, copper deposition from acidified copper(II) sulfate solution was used. It was found that the mass transfer rate increases with inclination from the vertical to the horizontal position and decreases with length of inclined surface. Correlation equations for 7 angles from 0 to 90° were found. The exponent in the ShL-RaL correlation ranged from 0.247 for the vertical case, indicating laminar flow, to 0.32 for inclinations of 60 to 90°, indicating mixed or turbulent flow. The general correlation ShL = 0.358(RaL sin θ)0.30 for the RaL sin θ range from 7 × 106 to 2 × 1011 and inclination range from 15 to 90° was obtained.


2000 ◽  
Vol 55 (7) ◽  
pp. 1257-1267 ◽  
Author(s):  
Tiruta-Barna Ligia ◽  
Barna Radu ◽  
Moszkowicz Pierre ◽  
Bae Hae-Ryong

RSC Advances ◽  
2016 ◽  
Vol 6 (111) ◽  
pp. 109978-109982 ◽  
Author(s):  
Young-Kee Kim ◽  
Sung-Yeob Lee ◽  
Byung-Keun Oh

In an enzyme process using a gas substrate, the enhanced gas liquid mass transfer rate of the gas substrate by methyl-functionalized mesoporous nanoparticles could improve the productivity.


Sign in / Sign up

Export Citation Format

Share Document