turbulent eddies
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 17)

H-INDEX

22
(FIVE YEARS 3)

Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1563
Author(s):  
Sayahnya Roy ◽  
Alexei Sentchev ◽  
Marc Fourmentin ◽  
Patrick Augustin

Reynolds stress anisotropy is estimated from the stress spheroids, based on 20 Hz ultrasonic anemometer measurements, performed in the coastal area of northern France, over a 1.5-year long period. Size and shape variation (i.e., prolate, oblate, disk, rod, etc.) of stress spheroids are used for the characterization of energy redistribution by turbulent eddies. The sea-breeze (SB) events were identified using a change in wind direction from seaward (SWD) to landward (LWD) during the day time. We found that the LWD wind creates more turbulent anisotropic states than SWD wind. The prolate-shaped stress spheroids correspond to small-scale turbulence observed during LWD wind, while oblate spheroids are found during SWD winds. Moreover, it was found that during LWD winds, large turbulence kinetic energy (TKE) in the flow field produces large stress spheroids. On the contrary, during SWD winds, a smaller level of TKE is responsible for small-size stress spheroid formation. The average volume of the corresponding Reynolds stress spheroids during the LWD is 13% larger than that of during SWD wind.


Author(s):  
Vicente Salinas ◽  
Eric C. Bruning ◽  
Edward R. Mansell

Abstract Lightning is frequently initiated within the convective regions of thunderstorms, and so flash rates tend to follow trends in updraft speed and volume. It has been suggested that lightning production is linked to the turbulent flow generated by updrafts as turbulent eddies organize charged hydrometeors into complex charge structures. These complex charge structures consist of local regions of increased charge magnitudes between which flash initiating electric fields may be generated. How turbulent kinematics influences lightning production, however, remains unclear. In this study, lightning flashes produced in a multi-cell and two supercell storms simulated using The Collaborative Model for Multiscale Atmospheric Simulation (COMMAS) were examined to identify the kinematic flow structures within which they occurred. By relating the structures of updrafts to thermals, initiated lightning were expected to be located where the rate of strain and rotational flow are equal, or between updraft and eddy flow features. Results showed that the average lightning flash is initiated in kinematic flow structures dominated by vortical flow patterns, similar to those of thermals, and the structures’ kinematics are characterized by horizontal vorticity and vertical shearing. These kinematic features were common across all cases and demonstrated that where flash initiating electric fields are generated is along the periphery of updrafts where turbulent eddies are produced. Careful consideration of flow structures near initiated flashes is consistent with those of thermals rising through a storm.


2021 ◽  
Author(s):  
Matthew Kamrath ◽  
Vladimir Ostashev ◽  
D. Wilson ◽  
Michael White ◽  
Carl Hart ◽  
...  

Sound propagation along vertical and slanted paths through the near-ground atmosphere impacts detection and localization of low-altitude sound sources, such as small unmanned aerial vehicles, from ground-based microphone arrays. This article experimentally investigates the amplitude and phase fluctuations of acoustic signals propagating along such paths. The experiment involved nine microphones on three horizontal booms mounted at different heights to a 135-m meteorological tower at the National Wind Technology Center (Boulder, CO). A ground-based loudspeaker was placed at the base of the tower for vertical propagation or 56m from the base of the tower for slanted propagation. Phasor scatterplots qualitatively characterize the amplitude and phase fluctuations of the received signals during different meteorological regimes. The measurements are also compared to a theory describing the log-amplitude and phase variances based on the spectrum of shear and buoyancy driven turbulence near the ground. Generally, the theory correctly predicts the measured log-amplitude variances, which are affected primarily by small-scale, isotropic turbulent eddies. However, the theory overpredicts the measured phase variances, which are affected primarily by large-scale, anisotropic, buoyantly driven eddies. Ground blocking of these large eddies likely explains the overprediction.


2021 ◽  
Vol 7 (14) ◽  
pp. eabd3525
Author(s):  
Yi-Bao Zhang ◽  
Eberhard Bodenschatz ◽  
Haitao Xu ◽  
Heng-Dong Xi

A minute amount of long-chain flexible polymer dissolved in a turbulent flow can drastically change flow properties, such as reducing the drag and enhancing mixing. One fundamental riddle is how these polymer additives interact with the eddies of different spatial scales existing in the turbulent flow and, in turn, alter the turbulence energy transfer. Here, we show how turbulent kinetic energy is transferred through different scales in the presence of the polymer additives. In particular, we observed experimentally the emerging of a previously unidentified scaling range, referred to as the elastic range, where increasing amount of energy is transferred by the elasticity of the polymers. In addition, the existence of the elastic range prescribes the scaling of high-order velocity statistics. Our findings have important implications to many turbulence systems, such as turbulence in plasmas or superfluids where interaction between turbulent eddies and other nonlinear physical mechanisms are often involved.


2021 ◽  
Vol 11 (6) ◽  
pp. 2644
Author(s):  
Peter Pipp ◽  
Marko Hočevar ◽  
Matevž Dular

Recently the development of Kelvin-Helmholtz instability in cavitating flow in Venturi microchannels was discovered. Its importance is not negligible, as it destabilizes the shear layer and promotes instabilities and turbulent eddies formation in the vapor region, having low density and momentum. In the present paper, we give a very brief summary of the experimental findings and in the following, we use a computational fluid dynamics (CFD) study to peek deeper into the onset of the Kelvin-Helmholtz instability and its effect on the dynamics of the cavitation cloud shedding. Finally, it is shown that Kelvin-Helmholtz instability is beside the re-entrant jet and the condensation shock wave the third mechanism of cavitation cloud shedding in Venturi microchannels. The shedding process is quasi-periodic.


Author(s):  
S. Kevin Bennett ◽  
R. Naren Shankar

Passive control for suppressing mixing noise from Co-Flowing Jets (CFJ) is presented in this study. The idea behind this is to reduce the convective Mach number of turbulent eddies that produce intense sound radiation. The present study analyses co-flowing jets with a bypass ratio of 6.3 and the primary nozzle lip thickness of 10 mm. The aim of the study is to find the jet noise level in finite lip thickness in co-flowing jets. CFJ with finite lip thickness forms a recirculation zone (in the near field). The secondary core and recirculation zone are shielding the primary core by reducing the jet noise. A single free jet with a diameter equal to that of a primary nozzle of co-flowing jet is also studied for comparison. The results show that co-flow jet with finite lip thickness of 10mm for various emission angles and the Overall Sound Pressure Level (OASPL) level gets reduced when compared with the single free jet.


2020 ◽  
Author(s):  
Huseyin Onur

Abstract The quest to understand turbulent flows continues to be as important as it was during the previous century. Present work shows that if a 'laminar' solution to Navier -Stokes equations can be found then skin friction and heat transfer coefficients for the turbulent case can readily be obtained. There is no need for Reynolds averaging and turbulence modelling. This can be done by defining a turbulence scaling factor which converts 'laminar' diffusivities to turbulent diffusivities. Using turbulent diffusivities in the laminar skin friction coefficient formula and laminar heat transfer coefficient formula gives the corresponding turbulent formula. Five different test cases with credible experimental measurements have been used to show the success of the present approach. This work also gives the lengths of internally generated turbulent eddies and roughness created turbulent eddies. If main flow mixes the turbulent eddies , smaller eddies are merged by the larger ones and this is the suggested model for roughness effects which dominates at large Reynolds numbers. A single effective roughness which determines the friction factor has also been obtained and the fractal dimension of turbulence is given as power to Reynolds number. This fractal dimension is in accord with literature for turbulent/non-turbulent interfaces.


Acoustics ◽  
2020 ◽  
Vol 2 (2) ◽  
pp. 207-223 ◽  
Author(s):  
Thomas Geyer ◽  
Sahan Wasala ◽  
Ennes Sarradj

The interaction of a turbulent flow with the leading edge of a blade is a main noise source mechanism for fans and wind turbines. Motivated by the silent flight of owls, the present paper describes an experimental study performed to explore the noise-reducing effect of comb-like extensions, which are fixed to the leading edge of a low-speed airfoil. The measurements took place in an aeroacoustic wind tunnel using the microphone array technique, while the aerodynamic performance of the modified airfoils was captured simultaneously. It was found that the comb structures lead to a noise reduction at low frequencies, while the noise at high frequencies slightly increases. The most likely reasons for this frequency shift are that the teeth of the combs break up large incoming turbulent eddies into smaller ones or that they shift turbulent eddies away from the airfoil surface, thereby reducing pressure fluctuations acting on the airfoil. The aerodynamic performance does not change significantly.


2020 ◽  
Vol 97 ◽  
pp. 102082 ◽  
Author(s):  
Philippe Mercier ◽  
Mikaël Grondeau ◽  
Sylvain Guillou ◽  
Jérôme Thiébot ◽  
Emmanuel Poizot

2020 ◽  
Vol 86 (2) ◽  
Author(s):  
Justin Ball ◽  
Stephan Brunner ◽  
Ajay C.J.

In this work, we highlight an issue that may reduce the accuracy of many local nonlinear gyrokinetic simulations – turbulent self-interaction through the parallel boundary condition. Given a sufficiently long parallel correlation length, individual turbulent eddies can span the full domain and ‘bite their own tails’, thereby altering their statistical properties. Such self-interaction is only modelled accurately when the simulation domain corresponds to a full flux surface, otherwise it is artificially strong. For Cyclone Base Case parameters and typical domain sizes, we find that this mechanism modifies the heat flux by approximately 40 % and it can be even more important. The effect is largest when using kinetic electrons, low magnetic shear and strong turbulence drive (i.e. steep background gradients). It is found that parallel self-interaction can be eliminated by increasing the parallel length and/or the binormal width of the simulation domain until convergence is achieved.


Sign in / Sign up

Export Citation Format

Share Document