scholarly journals Genetic Deletion of Galectin-3 Does Not Impair Full-Thickness Excisional Skin Healing

2016 ◽  
Vol 136 (5) ◽  
pp. 1042-1050 ◽  
Author(s):  
John T. Walker ◽  
Christopher G. Elliott ◽  
Thomas L. Forbes ◽  
Douglas W. Hamilton
2017 ◽  
Vol 60 ◽  
pp. 270-281 ◽  
Author(s):  
Sophorn Chip ◽  
David Fernández-López ◽  
Fan Li ◽  
Joel Faustino ◽  
Nikita Derugin ◽  
...  

2019 ◽  
Vol 316 (5) ◽  
pp. L784-L797 ◽  
Author(s):  
Scott A. Barman ◽  
Xueyi Li ◽  
Stephen Haigh ◽  
Dmitry Kondrikov ◽  
Keyvan Mahboubi ◽  
...  

A defining characteristic of pulmonary hypertension (PH) is the extensive remodeling of pulmonary arteries (PAs), which results in progressive increases in vascular resistance and stiffness and eventual failure of the right ventricle. There is no cure for PH and identification of novel molecular mechanisms that underlie increased proliferation, reduced apoptosis, and excessive extracellular matrix production in pulmonary artery smooth muscle cells (PASMCs) is a vital objective. Galectin-3 (Gal-3) is a chimeric lectin and potent driver of many aspects of fibrosis, but its role in regulating PASMC behavior in PH remains poorly understood. Herein, we evaluated the importance of increased Gal-3 expression and signaling on PA vascular remodeling and cardiopulmonary function in experimental models of PH. Gal-3 expression was quantified by qRT-PCR, immunoblotting, and immunofluorescence imaging, and its functional role was assessed by specific Gal-3 inhibitors and CRISPR/Cas9-mediated knockout of Gal-3 in the rat. In rat models of PH, we observed increased Gal-3 expression in PASMCs, which stimulated migration and resistance to apoptosis, whereas silencing or genetic deletion reduced cellular migration and PA fibrosis and increased apoptosis. Gal-3 inhibitors attenuated and reversed PA remodeling and fibrosis, as well as hemodynamic indices in monocrotaline (MCT)-treated rats in vivo. These results were supported by genetic deletion of Gal-3 in both MCT and Sugen Hypoxia rat models. In conclusion, our results suggest that elevated Gal-3 levels contribute to inappropriate PA remodeling in PH by enhancing multiple profibrotic mechanisms. Therapeutic strategies targeting Gal-3 may be of benefit in the treatment of PH.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kristiaan Wouters ◽  
Alessia S. Cento ◽  
Katrien H. Gaens ◽  
Margee Teunissen ◽  
Jean L. J. M. Scheijen ◽  
...  

AbstractAdvanced glycation endproducts (AGEs) are involved in several diseases, including NAFLD and NASH. RAGE is the main receptor mediating the pro-inflammatory signalling induced by AGEs. Therefore, targeting of RAGE has been proposed for prevention of chronic inflammatory diseases. However, the role of RAGE in the development of NAFLD and NASH remains poorly understood. We thus aimed to analyse the effect of obesity on AGEs accumulation, AGE-receptors and AGE-detoxification, and whether the absence of RAGE might improve hepatosteatosis and inflammation, by comparing the liver of lean control, obese (LeptrDb−/−) and obese RAGE-deficient (RAGE−/− LeptrDb−/−) mice. Obesity induced AGEs accumulation and RAGE expression with hepatosteatosis and inflammation in LeptrDb−/−, compared to lean controls. Despite the genetic deletion of RAGE in the LeptrDb−/− mice, high levels of intrahepatic AGEs were maintained accompanied by decreased expression of the protective AGE-receptor-1, impaired AGE-detoxifying system glyoxalase-1, and increased expression of the alternative AGE-receptor galectin-3. We also found sustained hepatosteatosis and inflammation as determined by persistent activation of the lipogenic SREBP1c and proinflammatory NLRP3 signalling pathways. Thus, RAGE targeting is not effective in the prevention of NAFLD in conditions of obesity, likely due to the direct liver specific crosstalk of RAGE with other AGE-receptors and AGE-detoxifying systems.


2016 ◽  
Vol 311 (5) ◽  
pp. H1287-H1296 ◽  
Author(s):  
Germán E. González ◽  
N.-E. Rhaleb ◽  
Martin A. D'Ambrosio ◽  
Pablo Nakagawa ◽  
Tang-Dong Liao ◽  
...  

Galectin-3 (Gal-3), a member of the β-galactoside lectin family, has an important role in immune regulation. In hypertensive rats and heart failure patients, Gal-3 is considered a marker for an unfavorable prognosis. Nevertheless, the role and mechanism of Gal-3 action in hypertension-induced target organ damage are unknown. We hypothesized that, in angiotensin II (ANG II)-induced hypertension, genetic deletion of Gal-3 prevents left ventricular (LV) adverse remodeling and LV dysfunction by reducing the innate immune responses and myocardial fibrosis. To induce hypertension, male C57BL/6J and Gal-3 knockout (KO) mice were infused with ANG II (3 μg·min−1·kg−1 sc) for 8 wk. We assessed: 1) systolic blood pressure by plethysmography, 2) LV function and remodeling by echocardiography, 3) myocardial fibrosis by histology, 4) cardiac CD68+ macrophage infiltration by histology, 5) ICAM-1 and VCAM-1 expression by Western blotting, 6) plasma cytokines, including interleukin-6 (IL-6), by enzyme-linked immunosorbent assay, and 7) regulatory T (Treg) cells by flow cytometry as detected by their combined expression of CD4, CD25, and FOXP3. Systolic blood pressure and cardiac hypertrophy increased similarly in both mouse strains when infused with ANG II. However, hypertensive C57BL/6J mice suffered impaired ejection and shortening fractions. In these mice, the extent of myocardial fibrosis and macrophage infiltration was greater in histological sections, and cardiac ICAM-1, as well as plasma IL-6, expression was higher as assessed by Western blotting. However, all these parameters were blunted in Gal-3 KO mice. Hypertensive Gal-3 KO mice also had a higher number of splenic Treg lymphocytes. In conclusion, in ANG II-induced hypertension, genetic deletion of Gal-3 prevented LV dysfunction without affecting blood pressure or LV hypertrophy. This study indicates that the ANG II effects are, in part, mediated or triggered by Gal-3 together with the related intercellular signaling (ICAM-1 and IL-6), leading to cardiac inflammation and fibrosis.


2020 ◽  
Vol 134 (1) ◽  
pp. 71-72
Author(s):  
Naseer Ahmed ◽  
Masooma Naseem ◽  
Javeria Farooq

Abstract Recently, we have read with great interest the article published by Ibarrola et al. (Clin. Sci. (Lond.) (2018) 132, 1471–1485), which used proteomics and immunodetection methods to show that Galectin-3 (Gal-3) down-regulated the antioxidant peroxiredoxin-4 (Prx-4) in cardiac fibroblasts. Authors concluded that ‘antioxidant activity of Prx-4 had been identified as a protein down-regulated by Gal-3. Moreover, Gal-3 induced a decrease in total antioxidant capacity which resulted in a consequent increase in peroxide levels and oxidative stress markers in cardiac fibroblasts.’ We would like to point out some results stated in the article that need further investigation and more detailed discussion to clarify certain factors involved in the protective role of Prx-4 in heart failure.


2013 ◽  
Author(s):  
Wawrzyniak Andrew J. ◽  
Kerry S. Whittaker ◽  
Sarah M. Godoy ◽  
Kristie M. Harris ◽  
Maria N. Banis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document