Split addition of enzymes in enzymatic hydrolysis at high solids concentration to increase sugar concentration for bioethanol production

2012 ◽  
Vol 18 (2) ◽  
pp. 707-714 ◽  
Author(s):  
Ying Xue ◽  
Hasan Jameel ◽  
Richard Phillips ◽  
Hou-min Chang
2018 ◽  
Vol 250 ◽  
pp. 273-280 ◽  
Author(s):  
Bárbara Ribeiro Alves Alencar ◽  
Emmanuel Damilano Dutra ◽  
Everardo Valadares de Sá Barretto Sampaio ◽  
Rômulo Simões Cezar Menezes ◽  
Marcos Antônio Morais

Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1563
Author(s):  
Omid Yazdani Aghmashhadi ◽  
Ghasem Asadpour ◽  
Esmaeil Rasooly Garmaroody ◽  
Majid Zabihzadeh ◽  
Lisandra Rocha-Meneses ◽  
...  

The aim of this paper is to study the effect of reinking and pretreatment of waste banknote paper on its usability in the bioethanol production process. To this end, the tensile strength of worn banknote paper was first studied at different pH values. The sample with the lowest tensile strength was considered for the next sections. In the deinking process, NaOH at different concentrations (1%, 2%, 3%, and 4%) and in combination with ultrasonic treatment was applied. After deinking the pulp, two acidic and alkaline chemical pretreatments with concentrations of 1%, 2%, 3%, and 4% were used independently and in combination with ultrasonic. Enzymatic hydrolysis, following fermentation with Scheffersomyces stipitis, and crystallinity measurements were used to confirm the efficiency of the pretreatments. RSM Design Expert software was used to determine the optimal values by considering the three variables—enzyme loading, ultrasonic loading, and contact time for waste paper deinked (WPD) and waste paper blank (WPB) pulps. The results indicated that repulping was the most efficient at pH = 2. In deinking, the highest brightness was obtained using 3% NaOH in combination with ultrasonic. Between the acid and alkaline pretreatment, the acid treatment was more appropriate according to the resulting sugar concentration and weight loss. XRD tests confirmed that the lowest crystallinity index was obtained in the sample pretreated with 4% sulfuric acid in combination with ultrasonic. The highest sugar concentration in the enzymatic hydrolysis step was 92 g/L for WPD and 81 g/L for WPB. For the fermentation at 96 h, the highest ethanol concentration and process efficiency achieved were 38 g/L and 80.9% for WPD and 31 g/L and 75.04% for WPB, respectively. Our research shows that the deinking process can widen the utilization potential of waste banknote paper in biorefinery processes.


Bionatura ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 1490-1500
Author(s):  
Jose F. Alvarez-Barreto ◽  
Fernando Larrea ◽  
Maria C. Pinos C ◽  
Jose Benalcázar ◽  
Daniela Oña ◽  
...  

Cocoa pod shell is an essential agricultural residue in Ecuador, and this study addressed its potential valorization for bioethanol production. For this, three types of pretreatments, acid, alkaline, and autohydrolysis, were applied to pod shells from two different cocoa types, national and CCN-51. to remove the lignin. Untreated and treated biomasses were characterized by composition, thermal stability, Fourier transformed infrared spectroscopy (FITR), and scanning electron microscopy (SEM). The treated biomass was then enzymatically hydrolyzed with cellulase. Reducing sugars were quantified after pretreatments and enzymatic hydrolysis, and the pretreatment liquors and the enzymatic hydrolysates were subjected to alcoholic fermentation with Saccharomyces cerevisiae. There were substantial differences in composition between both biomasses, particularly in lignin content, with national cocoa having the lowest values. All pretreatment conditions had significant effects on biomass composition, structure, and thermal properties. After alkaline pretreatment, the biomass presented the highest cellulose and lowest lignin contents, resulting in the highest reducing sugar concentration in the pretreatment liquor. The highest lignin content was found after the acid pretreatment, which resulted in low, reducing sugar concentrations. Autohydrolysis produced similar results as the acid pretreatment; however, it resulted in the highest sugar concentration after enzymatic hydrolysis, while the acid-treated sample had negligible levels. After fermentation, there were no differences in productivity among the pretreatment liquors, but autohydrolysis had the largest ethanol yield. In the hydrolysates, it was also autohydrolysis that resulted in higher productivity and yield. Thus, there is an indication of the formation of inhibitors, both enzymatic activity and ethanol production, in the acid and alkaline pretreatments, and this should be tackled in future research. Nonetheless, given the crucial changes observed in biomass, we believe that cocoa pod shell pretreatment has potential for the generation of reducing sugars that could be further used in different bioprocesses, nor only bioethanol production.


1985 ◽  
Vol 39 (1) ◽  
pp. 65-69 ◽  
Author(s):  
Tatsuo Nakano ◽  
Shuichi Nagato ◽  
Michihiro Nakura

2011 ◽  
Vol 5 (6) ◽  
pp. 609-620 ◽  
Author(s):  
S. Di Risio ◽  
C. S. Hu ◽  
B. A. Saville ◽  
D. Liao ◽  
J. Lortie

2016 ◽  
Vol 221 ◽  
pp. 461-468 ◽  
Author(s):  
Yang Xing ◽  
Lingxi Bu ◽  
Tianran Zheng ◽  
Shijie Liu ◽  
Jianxin Jiang

2017 ◽  
Vol 60 (4) ◽  
pp. 1025-1033
Author(s):  
Alicia A. Modenbach ◽  
Sue E. Nokes ◽  
Michael D. Montross ◽  
Barbara L. Knutson

Abstract. High-solids lignocellulosic pretreatment using NaOH followed by high-solids enzymatic hydrolysis was evaluated for an on-farm biochemical conversion process. Increasing the solids loadings for these processes has the potential for increasing glucose concentrations and downstream ethanol production; however, sequential processing at high-solids loading similar to an on-farm cellulose conversion system has not been studied. This research quantified the effects of high-solids pretreatment with NaOH and subsequent high-solids enzymatic hydrolysis on cellulose conversion. As expected, conversion efficiency was reduced; however, the highest glucose concentration (40.2 g L-1), and therefore the highest potential ethanol concentration, resulted from the high-solids combined pretreatment and hydrolysis. Increasing the enzyme dosage improved cellulose conversion from 9.6% to 36.8% when high-solids loadings were used in both unit operations; however, increasing NaOH loading and pretreatment time did not increase the conversion efficiency. The enzyme-to-substrate ratio had a larger impact on cellulose conversion than the NaOH pretreatment conditions studied, resulting in recommendations for an on-farm bioconversion system. Keywords: Corn stover, Enzymatic hydrolysis, Enzyme loading, High solids, Low solids, Sodium hydroxide.


Sign in / Sign up

Export Citation Format

Share Document