Techno-economic analysis of methanol production from joint feedstock of coke oven gas and basic oxygen furnace gas from steel-making

2019 ◽  
Vol 75 ◽  
pp. 77-85 ◽  
Author(s):  
Jeong-Keun Lee ◽  
In-Beum Lee ◽  
Jeehoon Han
1997 ◽  
Vol 47 (6) ◽  
pp. 716-721 ◽  
Author(s):  
Santanu K. Ray ◽  
Gautam Chattopadhyay ◽  
Asim K. Ray

Author(s):  
James Dicampli ◽  
Luis Madrigal ◽  
Patrick Pastecki ◽  
Joe Schornick

A major environmental concern associated with integrated steel mills is the pollution produced in the manufacture of coke, an essential intermediate product in the reduction of iron ore in a blast furnace. Coke is produced by driving off the volatile constituents of the coal—including water, coke oven gas, and coal-tar—by baking the coal in an airless furnace at temperatures as high as 2,000 degrees Celsius. This fuses together the fixed carbon and residual ash. The coke oven gas (COG) byproduct, a combustible hydrogen and hydrocarbon gas mix, may be flared, recycled to heat the coal, or cleaned to be used as a fuel source to generate energy or used to produce methanol. There are several inherent problems with COG as a fuel for power generation, notably contaminants that would not be found in pipeline natural gas or distillate fuels. Tar, a by-product of burning coal, is plentiful in COG and can be detrimental to gas turbine hot gas path components. Particulates, in the form of dust particles, are another nuisance contaminant that can shorten the life of the gas turbine’s hot section via erosion and plugging of internal cooling holes. China, the world’s largest steel producing country, has approximately 1,000 coke plants producing 200MT/year of COG. GE Energy has entered into the low British thermal unit (BTU) gases segment in China with an order from Henan Liyuan Coking Co., Ltd. The gas turbines will burn 100% coke oven gas, which will help the Liyuan Coking Plant reduce emissions and convert low BTU gas to power efficiently. This paper will detail the technical challenges and solutions for utilization of COG in an aeroderivative gas turbine, including operational experience. Additionally, it will evaluate the economic returns of gas turbine compared to steam turbine power generation or methanol production.


2007 ◽  
Vol 561-565 ◽  
pp. 85-89 ◽  
Author(s):  
O.A. El Hady ◽  
Amer E. Amer ◽  
I.S. El Mahallawi ◽  
Y.S. Shash

At the Egyptian Iron and Steel Company, attention is constantly focused on improving basic steel making practice with the aim of improvement of blowing regime and the addition of forming slag materials system. A number of factors considered important in controlling the properties of steel products and affecting the residual manganese in the basic Oxygen furnace (BOF) have been investigated by changing some industrial parameters, aiming at optimizing the residual manganese in BOF. The studied factors were manganese oxide in the slag, iron oxide in the slag, tapping temperature, Slag basicity, Lance height, blowing time, and carbon content. It was found that residual manganese increased from 0.25 to 0.35 % wt, due to the reduction of both MnO in slag from 22% to 15% and FeO from 21 to18%, also the increase of tapping temperature from 1650 oC to 1670 oC caused an increase the residual manganese from 0.27% to 0.35%, and the slag basicity decrease from 4.25 to 3.8 led to an increase in the residual manganese from 0.25 to 0.37%. Also, the change of the lance height from 1050 mm to 825 mm caused an increase in the residual manganese from 0.27 % to 0.33 %. These results are believed to be reflected on the total energy consumption and ferromanganese additions needed for producing specific grades.


2009 ◽  
Vol 6 (6) ◽  
pp. 736-748 ◽  
Author(s):  
Hasan Alanyali ◽  
Mustafa Çöl ◽  
Muharrem Yilmaz ◽  
Şadi Karagöz

Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1042
Author(s):  
Jean-François Portha ◽  
Wilmar Uribe-Soto ◽  
Jean-Marc Commenge ◽  
Solène Valentin ◽  
Laurent Falk

This paper focuses on the best way to produce methanol by Coke Oven Gas (COG) conversion and by carbon dioxide capture. The COG, produced in steelworks and coking plants, is an interesting source of hydrogen that can be used to hydrogenate carbon dioxide, recovered from flue gases, into methanol. The architecture of the reuse process is developed and the different process units are compared by considering a hierarchical decomposition. Two case studies are selected, process units are modelled, and flowsheets are simulated using computer-aided design software. A factorial techno-economic analysis is performed together with a preliminary carbon balance to evaluate the economic reliability and the environmental sustainability of the proposed solutions. The production costs of methanol are equal to 228 and 268 €/ton for process configurations involving, respectively, a combined methane reforming of COG and a direct COG separation to recover hydrogen. This cost is slightly higher than the current price of methanol on the market (about 204 €/ton for a process located in the USA in 2013). Besides, the second case study shows an interesting reduction of the carbon footprint with respect to reference scenarios. The carbon dioxide capture from flue gases together with COG utilization can lead to a competitive and sustainable methanol production process depending partly on a carbon tax.


Sign in / Sign up

Export Citation Format

Share Document