The optimal carbon and hydrogen balance for methanol production from coke oven gas and Linz-Donawitz gas: Process development and techno-economic analysis

Fuel ◽  
2020 ◽  
Vol 266 ◽  
pp. 117093 ◽  
Author(s):  
Sunghoon Kim ◽  
Jiyong Kim
Author(s):  
James Dicampli ◽  
Luis Madrigal ◽  
Patrick Pastecki ◽  
Joe Schornick

A major environmental concern associated with integrated steel mills is the pollution produced in the manufacture of coke, an essential intermediate product in the reduction of iron ore in a blast furnace. Coke is produced by driving off the volatile constituents of the coal—including water, coke oven gas, and coal-tar—by baking the coal in an airless furnace at temperatures as high as 2,000 degrees Celsius. This fuses together the fixed carbon and residual ash. The coke oven gas (COG) byproduct, a combustible hydrogen and hydrocarbon gas mix, may be flared, recycled to heat the coal, or cleaned to be used as a fuel source to generate energy or used to produce methanol. There are several inherent problems with COG as a fuel for power generation, notably contaminants that would not be found in pipeline natural gas or distillate fuels. Tar, a by-product of burning coal, is plentiful in COG and can be detrimental to gas turbine hot gas path components. Particulates, in the form of dust particles, are another nuisance contaminant that can shorten the life of the gas turbine’s hot section via erosion and plugging of internal cooling holes. China, the world’s largest steel producing country, has approximately 1,000 coke plants producing 200MT/year of COG. GE Energy has entered into the low British thermal unit (BTU) gases segment in China with an order from Henan Liyuan Coking Co., Ltd. The gas turbines will burn 100% coke oven gas, which will help the Liyuan Coking Plant reduce emissions and convert low BTU gas to power efficiently. This paper will detail the technical challenges and solutions for utilization of COG in an aeroderivative gas turbine, including operational experience. Additionally, it will evaluate the economic returns of gas turbine compared to steam turbine power generation or methanol production.


Energy ◽  
2016 ◽  
Vol 112 ◽  
pp. 618-628 ◽  
Author(s):  
Qun Yi ◽  
Min-Hui Gong ◽  
Yi Huang ◽  
Jie Feng ◽  
Yan-Hong Hao ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1042
Author(s):  
Jean-François Portha ◽  
Wilmar Uribe-Soto ◽  
Jean-Marc Commenge ◽  
Solène Valentin ◽  
Laurent Falk

This paper focuses on the best way to produce methanol by Coke Oven Gas (COG) conversion and by carbon dioxide capture. The COG, produced in steelworks and coking plants, is an interesting source of hydrogen that can be used to hydrogenate carbon dioxide, recovered from flue gases, into methanol. The architecture of the reuse process is developed and the different process units are compared by considering a hierarchical decomposition. Two case studies are selected, process units are modelled, and flowsheets are simulated using computer-aided design software. A factorial techno-economic analysis is performed together with a preliminary carbon balance to evaluate the economic reliability and the environmental sustainability of the proposed solutions. The production costs of methanol are equal to 228 and 268 €/ton for process configurations involving, respectively, a combined methane reforming of COG and a direct COG separation to recover hydrogen. This cost is slightly higher than the current price of methanol on the market (about 204 €/ton for a process located in the USA in 2013). Besides, the second case study shows an interesting reduction of the carbon footprint with respect to reference scenarios. The carbon dioxide capture from flue gases together with COG utilization can lead to a competitive and sustainable methanol production process depending partly on a carbon tax.


2011 ◽  
Vol 4 (9) ◽  
pp. 3122 ◽  
Author(s):  
Jiyong Kim ◽  
Carlos A. Henao ◽  
Terry A. Johnson ◽  
Daniel E. Dedrick ◽  
James E. Miller ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document