scholarly journals Techno-Economic and Carbon Footprint Analyses of a Coke Oven Gas Reuse Process for Methanol Production

Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1042
Author(s):  
Jean-François Portha ◽  
Wilmar Uribe-Soto ◽  
Jean-Marc Commenge ◽  
Solène Valentin ◽  
Laurent Falk

This paper focuses on the best way to produce methanol by Coke Oven Gas (COG) conversion and by carbon dioxide capture. The COG, produced in steelworks and coking plants, is an interesting source of hydrogen that can be used to hydrogenate carbon dioxide, recovered from flue gases, into methanol. The architecture of the reuse process is developed and the different process units are compared by considering a hierarchical decomposition. Two case studies are selected, process units are modelled, and flowsheets are simulated using computer-aided design software. A factorial techno-economic analysis is performed together with a preliminary carbon balance to evaluate the economic reliability and the environmental sustainability of the proposed solutions. The production costs of methanol are equal to 228 and 268 €/ton for process configurations involving, respectively, a combined methane reforming of COG and a direct COG separation to recover hydrogen. This cost is slightly higher than the current price of methanol on the market (about 204 €/ton for a process located in the USA in 2013). Besides, the second case study shows an interesting reduction of the carbon footprint with respect to reference scenarios. The carbon dioxide capture from flue gases together with COG utilization can lead to a competitive and sustainable methanol production process depending partly on a carbon tax.

2012 ◽  
Vol 16 (5) ◽  
pp. 3043-3053 ◽  
Author(s):  
J.C.M. Pires ◽  
M.C.M. Alvim-Ferraz ◽  
F.G. Martins ◽  
M. Simões

Author(s):  
Yanbing Li ◽  
Rui Xiao ◽  
Baosheng Jin ◽  
Huiyan Zhang

As one of the fundamental issues of the new poly-generation system on the basis of gasification gas and coke oven gas, carbon dioxide reforming of methane experiments have been performed over coal chars derived from different parent coals in a lab-scale fixed-bed reactor (internal diameter 12 mm, length 700 mm). The char derived from TongChuan coal exhibited higher activity than other samples employed under the same conditions. After the reforming reaction, the char samples were covered with different amounts of carbon deposition which resulted in the surface areas decrease. As the flow rate of feed gas increased from 200 ml/min to 600 ml/min over the Xuzhou char sample at 1050 degrees Celsius, the conversion of methane decreased from 52.7% to 17.5% and the H2 /CO dropped from 0.75 to 0.55. While maintaining the flow rate of CO2 at 20ml/min at 1050 degrees Celsius, the mole ratio of reactants CH4/CO2 was varied from 1 to 1.75 which led to the H2/CO ratio increase from 0.75 to 1.2.


Author(s):  
James Dicampli ◽  
Luis Madrigal ◽  
Patrick Pastecki ◽  
Joe Schornick

A major environmental concern associated with integrated steel mills is the pollution produced in the manufacture of coke, an essential intermediate product in the reduction of iron ore in a blast furnace. Coke is produced by driving off the volatile constituents of the coal—including water, coke oven gas, and coal-tar—by baking the coal in an airless furnace at temperatures as high as 2,000 degrees Celsius. This fuses together the fixed carbon and residual ash. The coke oven gas (COG) byproduct, a combustible hydrogen and hydrocarbon gas mix, may be flared, recycled to heat the coal, or cleaned to be used as a fuel source to generate energy or used to produce methanol. There are several inherent problems with COG as a fuel for power generation, notably contaminants that would not be found in pipeline natural gas or distillate fuels. Tar, a by-product of burning coal, is plentiful in COG and can be detrimental to gas turbine hot gas path components. Particulates, in the form of dust particles, are another nuisance contaminant that can shorten the life of the gas turbine’s hot section via erosion and plugging of internal cooling holes. China, the world’s largest steel producing country, has approximately 1,000 coke plants producing 200MT/year of COG. GE Energy has entered into the low British thermal unit (BTU) gases segment in China with an order from Henan Liyuan Coking Co., Ltd. The gas turbines will burn 100% coke oven gas, which will help the Liyuan Coking Plant reduce emissions and convert low BTU gas to power efficiently. This paper will detail the technical challenges and solutions for utilization of COG in an aeroderivative gas turbine, including operational experience. Additionally, it will evaluate the economic returns of gas turbine compared to steam turbine power generation or methanol production.


2019 ◽  
pp. 471-478
Author(s):  
Ewgen Danilin ◽  
Alexander Lobov

Kotloenergoprom Stock Co. has developed new technology of thermal rendering harmless andwaste recovering of heat of flue gases from coke-oven batteries in one unit.In 2000, Kotloenergoprom Stock Co. had executed the design of the first in the world Unit ofthermal rendering harmless and waste recovering of heat of flue gases from the coke-oven batteryNo. l installed in "Zaporozhkoks" (65 furnaces, H = 7.0 m, V = 41.6 m3).The complex "Coke-oven battery - Unit" operates in the special mode using automatic processcontrol system. Introduction the above Unit in 2002 had ensured: decrease of NOx contents influe gases from coke-oven battery in 1.5+2 times and CO on 90+ I 00 % with providinginternational norms of ejections; rebuming solid carbon inclusions and combustible components(H2, CH4, CmHn) in flue gases; stabilization of hydraulic mode of coke-oven battery operation;non-shock putting coke-oven battery into operation directly to chimney stack in case of scheduledor accident stopping the Unit; waste recovery of heat of flue gases from coke-oven battery inquantity up to 6.0 Gkal/h; producing up to 85 tph of steam with energetic parameters at additionalcombustion of coke-oven gas (without building new chimney stack), that lets to produceadditionally 6 MWt of electric power;Standard scheme of producing heat and electric power at by-product coke plants applying usualboiler houses and power stations is irrational. The more effective is to apply the scheme ofproducing heat and electric power with simultaneous rendering harmless and waste recovery ofheat of flue gases from coke-oven batteries in the special Units using existing chimney stacks ofcoke-oven batteries.Cost of building the Unit is not more than cost of usual boiler house or power station with equalcapacity.


2019 ◽  
Vol 44 (16) ◽  
pp. 8233-8242 ◽  
Author(s):  
Hak-Min Kim ◽  
Beom-Jun Kim ◽  
Won-Jun Jang ◽  
Jae-Oh Shim ◽  
Kyung-Won Jeon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document