Monoclonal antibodies to guinea pig interferon-gamma: Tools for cytokine detection and neutralization

2007 ◽  
Vol 328 (1-2) ◽  
pp. 106-117 ◽  
Author(s):  
H. Schäfer ◽  
G. Kliem ◽  
B. Kropp ◽  
R. Burger
1983 ◽  
Vol 63 (2) ◽  
pp. 247-261 ◽  
Author(s):  
Joe Chiba ◽  
Thomas M. Chused ◽  
William M. Leiserson ◽  
Stephen E. Zweig ◽  
Ethan M. Shevach

Cytokine ◽  
2022 ◽  
Vol 150 ◽  
pp. 155777
Author(s):  
Hailing Zhang ◽  
Shasha Zhang ◽  
Sining Fan ◽  
Lei Zhang ◽  
Bo Hu ◽  
...  

1984 ◽  
Vol 48 (7) ◽  
pp. 1835-1840 ◽  
Author(s):  
Koji IKURA ◽  
Shin-ichi YANAGAWA ◽  
Katsuzumi OKUMURA ◽  
Ryuzo SASAKI ◽  
Hideo CHIBA

1994 ◽  
Vol 40 (10) ◽  
pp. 865-872 ◽  
Author(s):  
Frank C. Gibson III ◽  
Arthur O. Tzianabos ◽  
Frank G. Rodgers

In the absence of serum, Legionella pneumophila demonstrated wash-resistant adherence to U-937 cells, primary guinea-pig alveolar macrophages, and MRC-5 cells. Neither complement nor antibody was required for binding. The dynamics of adherence following inoculation of L. pneumophila at increasing 10-fold multiplicities of infection to each of the three host cell types resulted in a first-order kinetic relationship of binding, indicative of one bacterial adhesin molecule recognized by one host cell receptor moiety. Host cell receptor saturation studies showed that depending on the cell type, 2–8% of the bacterial inoculum adhered to cells under these nonopsonic conditions. Preliminary adhesin and receptor characterization studies were preformed to define the chemical composition of the binding structures on both the organism and the three different host cell surfaces. The adherence phenomenon was investigated using competitive binding assays in the presence of putative adhesin analogs as well as following treatments modifying the microbial and host cell surface membranes. Attachment was evaluated both by viable bacterial cell colony counts and by indirect immunofluorescent assay. With the exception of aldehyde treatments, the various membrane-modifying regimes and the presence of the adhesin analogs were shown to have no effect on organism or host cell viability. Data suggested that the L. pneumophila adhesin responsible for opsonin-independent binding to these host cells was a protein structure with lectin-like properties. Furthermore, this protein would appear to be intimately associated with carbohydrate or lipid structures located on the bacterial outer membrane. The receptor moiety present on all host cells responsible for binding L. pneumophila had properties consistent with a carbohydrate or complex saccharide structure. To evaluate the role of complement receptors as the structures necessary for L. pneumophila infection of macrophages, a battery of monoclonal antibodies were used to block the complement receptor (CR) types 1 (CD35), CR3 (CD 18, CD11b), and CR4 (CD18, CD11c). Blocking studies with CR-specific monoclonal antibodies indicated that CR1 and the integrin receptors CR3 and CR4 were not involved in the opsonin-independent binding of L. pneumophila to macrophage-like cells.Key words: Legionella, opsonin-independent attachment, bacterial adherence, complement receptors, adhesion–receptor interactions.


1990 ◽  
Vol 38 (2) ◽  
pp. 257-265 ◽  
Author(s):  
L Gorza

A novel type of myosin heavy chain (MHC), called 2X, has been recently identified in type 2 fibers of rat skeletal muscles using an immunochemical approach. In the present study, the same panel of anti-MHC monoclonal antibodies was used in immunohistochemistry combined with enzyme histochemistry to identify and compare type 2X fibers in hindlimb skeletal muscles of rat, mouse, and guinea pig. Immunohistochemistry shows that 2X MHC is localized in a large subset of type 2 fibers and is co-expressed with 2A or 2B MHC in a small number of fibers. Enzyme histochemistry shows that type 2X fibers display low myosin ATPase activity after pre-incubation at pH 4.3 and high activity after paraformaldehyde pre-incubation at pH 10.4. After pre-incubation at pH 4.6, myosin ATPase shows intermediate and high activity in rat and mouse 2X fibers, respectively, whereas it is low in guinea pig 2X fibers. Succinate dehydrogenase displays moderate to high activity in 2X fibers of all species. Taken together, these staining patterns allow this novel fiber population to be distinguished from the other type 2 fibers using only enzyme histochemistry. Nevertheless, the combined use of immuno- and enzyme histochemistry prevents incorrect fiber typing due to the interspecies variability of myosin ATPase activity among the correspondent fiber types, and completely modifies the presently used classification of mouse type 2 fibers.


1983 ◽  
Vol 98 (2) ◽  
pp. 417-428 ◽  
Author(s):  
Paul Primakoff ◽  
Diana Gold Myles

Sign in / Sign up

Export Citation Format

Share Document