Host-pathogen interactions upon the first and subsequent infection of Galleria mellonella with Candida albicans

2019 ◽  
Vol 117 ◽  
pp. 103903 ◽  
Author(s):  
Lidiia Vertyporokh ◽  
Jakub Kordaczuk ◽  
Paweł Mak ◽  
Monika Hułas-Stasiak ◽  
Iwona Wojda
2004 ◽  
Vol 6 (10) ◽  
pp. 915-926 ◽  
Author(s):  
Julian Naglik ◽  
Antje Albrecht ◽  
Oliver Bader ◽  
Bernhard Hube

mSphere ◽  
2020 ◽  
Vol 5 (4) ◽  
Author(s):  
Franziska Gerwien ◽  
Christine Dunker ◽  
Philipp Brandt ◽  
Enrico Garbe ◽  
Ilse D. Jacobsen ◽  
...  

ABSTRACT Typically, established lab strains are widely used to study host-pathogen interactions. However, to better reflect the infection process, the experimental use of clinical isolates has come more into focus. Here, we analyzed the interaction of multiple vaginal isolates of the opportunistic fungal pathogen Candida albicans, the most common cause of vulvovaginal candidiasis in women, with key players of the host immune system: macrophages. We tested several strains isolated from asymptomatic or symptomatic women with acute and recurrent infections. While all clinical strains showed a response similar to the commonly used lab strain SC5314 in various in vitro assays, they displayed remarkable differences during interaction with macrophages. This coincided with significantly reduced β-glucan exposure on the cell surface, which appeared to be a shared property among the tested vaginal strains for yeast extract/peptone/dextrose-grown cells, which is partly lost when the isolates faced vaginal niche-like nutrient conditions. However, macrophage damage, survival of phagocytosis, and filamentation capacities were highly strain-specific. These results highlight the high heterogeneity of C. albicans strains in host-pathogen interactions, which have to be taken into account to bridge the gap between laboratory-gained data and disease-related outcomes in an actual patient. IMPORTANCE Vulvovaginal candidiasis is one of the most common fungal infections in humans with Candida albicans as the major causative agent. This study is the first to compare clinical vaginal isolates of defined patient groups in their interaction with macrophages, highlighting the vastly different outcomes in comparison to a laboratory strain using commonly applied virulence-determining assays.


2011 ◽  
Vol 301 (5) ◽  
pp. 417-422 ◽  
Author(s):  
Ronny Martin ◽  
Betty Wächtler ◽  
Martin Schaller ◽  
Duncan Wilson ◽  
Bernhard Hube

Author(s):  
Mariusz Gogol ◽  
Oliwia Bochenska ◽  
Marcin Zawrotniak ◽  
Justyna Karkowska-Kuleta ◽  
Dorota Zajac ◽  
...  

Microbiology ◽  
2011 ◽  
Vol 157 (5) ◽  
pp. 1481-1488 ◽  
Author(s):  
John P. Fallon ◽  
Emer P. Reeves ◽  
Kevin Kavanagh

Larvae of Galleria mellonella are widely used to evaluate microbial virulence and to assess the in vivo efficacy of antimicrobial agents. The aim of this work was to examine the ability of an Aspergillus fumigatus toxin, fumagillin, to suppress the immune response of larvae. Administration of fumagillin to larvae increased their susceptibility to subsequent infection with A. fumigatus conidia (P = 0.0052). It was demonstrated that a dose of 2 µg fumagillin ml−1 reduced the ability of insect immune cells (haemocytes) to kill opsonized cells of Candida albicans (P = 0.039) and to phagocytose A. fumigatus conidia (P = 0.016). Fumagillin reduced the oxygen uptake of haemocytes and decreased the translocation of a p47 protein which is homologous to p47phox, a protein essential for the formation of a functional NADPH oxidase complex required for superoxide production. In addition, toxin-treated haemocytes showed reduced levels of degranulation as measured by the release of a protein showing reactivity to an anti-myeloperoxidase antibody (P<0.049) that was subsequently identified by liquid chromatography-MS analysis as prophenoloxidase. This work demonstrates that fumagillin suppresses the immune response of G. mellonella larvae by inhibiting the action of haemocytes and thus renders the larvae susceptible to infection. During growth of the fungus in the larvae, this toxin, along with others, may facilitate growth by suppressing the cellular immune response.


Sign in / Sign up

Export Citation Format

Share Document