scholarly journals Spectral sensitivity of L2 biotype in the Thrips tabaci cryptic species complex

2020 ◽  
Vol 121 ◽  
pp. 103999
Author(s):  
Ádám Egri ◽  
Péter Farkas ◽  
Balázs Bernáth ◽  
Patrick M. Guerin ◽  
József Fail
2019 ◽  
Vol 110 (3) ◽  
pp. 397-405 ◽  
Author(s):  
Péter Farkas ◽  
Zsuzsanna György ◽  
Annamária Tóth ◽  
Annamária Sojnóczki ◽  
József Fail

AbstractThe onion thrips (Thrips tabaci Lindeman, 1889) is a key pest of a wide range of crops because of its ecological attributes such as polyphagy, high reproduction rate, ability to transmit tospoviruses and resistance to insecticides. Recent studies revealed that T. tabaci is a cryptic species complex and it has three lineages (leek-associated arrhenotokous L1-biotype, leek-associated thelytokous L2-biotype and tobacco-associated arrhenotokous T-biotype), however, the adults remain indistinguishable. T. tabaci individuals were collected from different locations of Hungary to create laboratory colonies from each biotypes. Mitochondrial COI (mtCOI) region was sequenced from morphologically identified individuals. After sequence analysis SNPs were identified and used for CAPS marker development, which were suitable for distinguishing the three T. tabaci lineages. Genetic analysis of the T. tabaci species complex based on mtCOI gene confirmed the three well-known biotypes (L1, L2, T) and a new biotype because the new molecular evidence presented in this study suggests T-biotype of T. tabaci forming two distinct (sub)clades (T1 and T2). This genetic finding indicates that the genetic variability of T. tabaci populations is still not fully mapped. We validated our developed marker on thrips individuals from our thrips colonies. The results demonstrated that the new marker effectively identifies the different T. tabaci biotypes. We believe that our reliable genotyping method will be useful in further studies focusing on T. tabaci biotypes and in pest management by scanning the composition of sympatric T. tabaci populations.


2012 ◽  
Vol 29 (6) ◽  
pp. 403 ◽  
Author(s):  
Natsumi Kanzaki ◽  
Erik J. Ragsdale ◽  
Matthias Herrmann ◽  
Werner E. Mayer ◽  
Ralf J. Sommer

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Andrea M. Quattrini ◽  
Tiana Wu ◽  
Keryea Soong ◽  
Ming-Shiou Jeng ◽  
Yehuda Benayahu ◽  
...  

Evolution ◽  
2019 ◽  
Vol 74 (1) ◽  
pp. 116-131 ◽  
Author(s):  
José Cerca ◽  
Christian Meyer ◽  
Dave Stateczny ◽  
Dominik Siemon ◽  
Jana Wegbrod ◽  
...  

2016 ◽  
Vol 177 (3) ◽  
pp. 481-506 ◽  
Author(s):  
Karen Kienberger ◽  
Leila Carmona ◽  
Marta Pola ◽  
Vinicius Padula ◽  
Terrence M. Gosliner ◽  
...  

2010 ◽  
Vol 100 (3) ◽  
pp. 359-366 ◽  
Author(s):  
J. Xu ◽  
P.J. De Barro ◽  
S.S. Liu

AbstractThe worldwide distribution and extensive genetic diversity of the whitefly Bemisia tabaci has long been recognized. However, whether B. tabaci is a complex species or a species complex has been a subject of debate. Recent phylogenetic analyses suggest that B. tabaci is a cryptic species complex composed of at least 24 morphologically indistinguishable species. Here, we conducted crossing experiments and demonstrated reproductive incompatibility among three of the 24 putative species. Our data and those of previously reported crossing experiments among various putative species of B. tabaci were collated to reveal the pattern of reproductive isolation. The combined results provide strong support to the proposition that B. tabaci is a cryptic species complex.


Sign in / Sign up

Export Citation Format

Share Document