scholarly journals Molecular and serological monitoring of dromedary camel herds for the Middle East Respiratory Syndrome Coronavirus

2019 ◽  
Vol 12 (1) ◽  
pp. 131
Author(s):  
M. Hemida ◽  
A. Alnaeem ◽  
M. Peiris
2016 ◽  
Vol 4 (2) ◽  
Author(s):  
Ahmed Kandeil ◽  
Mahmoud M. Shehata ◽  
Rabeh El Shesheny ◽  
Mokhtar R. Gomaa ◽  
Mohamed A. Ali ◽  
...  

We generated the near-full genome sequence of Middle East respiratory syndrome coronavirus (MERS-CoV) from a collected nasal sample of dromedary camel in Egypt. The newly characterized Egyptian strain has high similarity to the previously characterized Egyptian virus and both of viruses fell into a cluster distinct from other MERS-CoVs.


2017 ◽  
Vol 6 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Maged Gomaa Hemida ◽  
Abdulmohsen Alnaeem ◽  
Daniel KW Chu ◽  
Ranawaka APM Perera ◽  
Samuel MS Chan ◽  
...  

2017 ◽  
Vol 114 (40) ◽  
pp. E8508-E8517 ◽  
Author(s):  
Wentao Li ◽  
Ruben J. G. Hulswit ◽  
Ivy Widjaja ◽  
V. Stalin Raj ◽  
Ryan McBride ◽  
...  

Middle East respiratory syndrome coronavirus (MERS-CoV) targets the epithelial cells of the respiratory tract both in humans and in its natural host, the dromedary camel. Virion attachment to host cells is mediated by 20-nm-long homotrimers of spike envelope protein S. The N-terminal subunit of each S protomer, called S1, folds into four distinct domains designated S1A through S1D. Binding of MERS-CoV to the cell surface entry receptor dipeptidyl peptidase 4 (DPP4) occurs via S1B. We now demonstrate that in addition to DPP4, MERS-CoV binds to sialic acid (Sia). Initially demonstrated by hemagglutination assay with human erythrocytes and intact virus, MERS-CoV Sia-binding activity was assigned to S subdomain S1A. When multivalently displayed on nanoparticles, S1 or S1A bound to human erythrocytes and to human mucin in a strictly Sia-dependent fashion. Glycan array analysis revealed a preference for α2,3-linked Sias over α2,6-linked Sias, which correlates with the differential distribution of α2,3-linked Sias and the predominant sites of MERS-CoV replication in the upper and lower respiratory tracts of camels and humans, respectively. Binding is hampered by Sia modifications such as 5-N-glycolylation and (7,)9-O-acetylation. Depletion of cell surface Sia by neuraminidase treatment inhibited MERS-CoV entry of Calu-3 human airway cells, thus providing direct evidence that virus–Sia interactions may aid in virion attachment. The combined observations lead us to propose that high-specificity, low-affinity attachment of MERS-CoV to sialoglycans during the preattachment or early attachment phase may form another determinant governing the host range and tissue tropism of this zoonotic pathogen.


2014 ◽  
Vol 63 (1) ◽  
pp. 1-9 ◽  
Author(s):  
C. Gossner ◽  
N. Danielson ◽  
A. Gervelmeyer ◽  
F. Berthe ◽  
B. Faye ◽  
...  

Viruses ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 611
Author(s):  
Badr M. Al-Shomrani ◽  
Manee M. Manee ◽  
Sultan N. Alharbi ◽  
Mussad A. Altammami ◽  
Manal A. Alshehri ◽  
...  

Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe respiratory illness in humans; the second-largest and most deadly outbreak to date occurred in Saudi Arabia. The dromedary camel is considered a possible host of the virus and also to act as a reservoir, transmitting the virus to humans. Here, we studied evolutionary relationships for 31 complete genomes of betacoronaviruses, including eight newly sequenced MERS-CoV genomes isolated from dromedary camels in Saudi Arabia. Through bioinformatics tools, we also used available sequences and 3D structure of MERS-CoV spike glycoprotein to predict MERS-CoV epitopes and assess antibody binding affinity. Phylogenetic analysis showed the eight new sequences have close relationships with existing strains detected in camels and humans in Arabian Gulf countries. The 2019-nCov strain appears to have higher homology to both bat coronavirus and SARS-CoV than to MERS-CoV strains. The spike protein tree exhibited clustering of MERS-CoV sequences similar to the complete genome tree, except for one sequence from Qatar (KF961222). B cell epitope analysis determined that the MERS-CoV spike protein has 24 total discontinuous regions from which just six epitopes were selected with score values of >80%. Our results suggest that the virus circulates by way of camels crossing the borders of Arabian Gulf countries. This study contributes to finding more effective vaccines in order to provide long-term protection against MERS-CoV and identifying neutralizing antibodies.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Maged Gomaa Hemida ◽  
Mohammed Alhammadi ◽  
Faisal Almathen ◽  
Abdelmohsen Alnaeem

Abstract Objective The Middle East respiratory syndrome coronavirus (MERS-CoV) is one of the zoonotic coronaviruses [Hemida Peer J 7:e7556, 2019; Hemida et al. One Health 8:100102, 2019]. The dromedary camels remained the only known animal reservoir for this virus. Several aspects of the transmission cycle of the virus between animals, including arthropod-borne infection, is still largely unknown. The main objective of the current work was to study the possibility of MERS-CoV transmission through some arthropod vectors, particularly the hard ticks. To achieve this objective, we identified a positive MERS-CoV dromedary camel herd using the commercial available real-time PCR kits. We collected some arthropods, particularly the ticks from these positive animals as well as from the animal habitats. We tested these arthropods for the presence of MERS-CoV viral RNAs. Results Our results showing the absence of any detectable MERS-CoV-RNAs in these arthropods despite these animals were actively shedding the virus in their nasal secretions. Our results are confirming for the first the failure of detection of the MERS-CoV in ticks infesting dromedary camels. Failure of the detection of MERS-CoV in ticks infesting positive naturally infected MERS-CoV camels is strongly suggesting that ticks do not play roles in the transmission of the virus among the animals and close contact humans.


Sign in / Sign up

Export Citation Format

Share Document