scholarly journals Bridge steel fiber reinforced concrete specimens under high loading rates

Author(s):  
Shamsoon Fareed ◽  
Pegah Behinaein ◽  
Ali Almonbhi ◽  
Wadea Sindi ◽  
Ayed Alluqmani
Fibers ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 93 ◽  
Author(s):  
Boglárka Bokor ◽  
Máté Tóth ◽  
Akanshu Sharma

Increased loading rates on fasteners may be caused by high ground accelerations as a consequence of e.g., nuclear explosions, earthquakes or car collisions. It was concluded by Hoehler et al. (2006) that fasteners under rapid loading rates show an increased ultimate resistance in the concrete dominant failure modes or the ultimate resistance is at least as large as under quasi-static loading. Due to the increased demand on using fasteners in steel fiber reinforced concrete (SFRC), it is intended to show how the ultimate concrete cone capacity of fasteners changes under higher than quasi-static loading rate in normal plain concrete (PC) and in SFRC. This paper presents the results of an extensive experimental program carried out on single fasteners loaded in tension in normal plain concrete and in SFRC. The test series were conducted using a servo-hydraulic loading cylinder. The tests were performed in displacement control with a programmed ramp speed of 1, 100, 1000, and 3500 mm/min. This corresponded to calculated initial loading rates ranging between 0.4 and 1600 kN/s. The results of the tension tests clearly show that the rate-dependent behavior of fasteners in SFRC with 30 and 50 kg/m3 hooked-end-type fibers fits well to the previously reported rate-dependent concrete cone behavior in normal plain concrete. Additionally, a positive influence of the fibers on the concrete cone capacity is clearly visible.


2017 ◽  
Vol 59 (7-8) ◽  
pp. 653-660 ◽  
Author(s):  
Wang Yan ◽  
Ge Lu ◽  
Chen Shi Jie ◽  
Zhou Li ◽  
Zhang Ting Ting

2021 ◽  
pp. 136943322098165
Author(s):  
Hossein Saberi ◽  
Farzad Hatami ◽  
Alireza Rahai

In this study, the co-effects of steel fibers and FRP confinement on the concrete behavior under the axial compression load are investigated. Thus, the experimental tests were conducted on 18 steel fiber-reinforced concrete (SFRC) specimens confined by FRP. Moreover, 24 existing experimental test results of FRP-confined specimens tested under axial compression are gathered to compile a reliable database for developing a mathematical model. In the conducted experimental tests, the concrete strength was varied as 26 MPa and 32.5 MPa and the steel fiber content was varied as 0.0%, 1.5%, and 3%. The specimens were confined with one and two layers of glass fiber reinforced polymer (GFRP) sheet. The experimental test results show that simultaneously using the steel fibers and FRP confinement in concrete not only significantly increases the peak strength and ultimate strain of concrete but also solves the issue of sudden failure in the FRP-confined concrete. The simulations confirm that the results of the proposed model are in good agreement with those of experimental tests.


1984 ◽  
Vol 21 (3) ◽  
pp. 108-111
Author(s):  
V. S. Sterin ◽  
V. A. Golubenkov ◽  
G. S. Rodov ◽  
B. V. Leikin ◽  
L. G. Kurbatov

Sign in / Sign up

Export Citation Format

Share Document