Hybrid risk-based LCA to improve the Acid Gas to Syngas (AG2S™) process

Author(s):  
Chiara Vianello ◽  
Andrea Bassani ◽  
Paolo Mocellin ◽  
Flavio Manenti ◽  
Carlo Pirola ◽  
...  
Keyword(s):  
Author(s):  
S. Z. Baykara ◽  
E. H. Figen ◽  
A. Kale ◽  
T. N. Veziroglu

Hydrogen sulphide, an acid gas, is generally considered an environmental pollutant. As an industrial byproduct, it is produced mostly during fuel processing. Hydrogen sulphide occurs naturally in many gas wells and also in gas hydrates and gas-saturated sediments especially at the bottom of the Black Sea where 90% of the sea water is anaerobic.The anoxic conditions exist in the deepest parts of the basin since nearly 7300 years, caused by the density stratification following the significant influx of the Mediterranean water through the Bosphorous nearly 9000 years ago. Here, H2S is believed to be produced by sulphur reducing bacteria at an approximate rate of 10 000 tons per day, and it poses a serious threat since it keeps reducing the life in the Black Sea. An oxygen–hydrogen sulphide interface is established at 150–200 m below the surface after which H2S concentration starts increasing regularly until 1000 m, and finally reaches a nearly constant value of 9.5 mg/l around 1500 m depth.Hydrogen sulphide potentially has economic value if both sulphur and hydrogen can be recovered. Several methods are studied for H2S decomposition, including thermal, thermochemical, electrochemical, photochemical and plasmochemical methods.In the present work, H2S potential in the Black Sea is investigated as a source of hydrogen, an evaluation of the developing prominent techniques for hydrogen production from H2S is made, and an engineering assessment is carried out regarding hydrogen production from H2S in the Black Sea using a process design based on the catalytic solar thermolysis approach. Possibility of a modular plant is considered for production at larger scale.


2016 ◽  
Author(s):  
Perdu Gauthier ◽  
Salais Clément ◽  
Carlier Vincent ◽  
Prosernat S. A Weiss Claire ◽  
Maubert Thomas ◽  
...  
Keyword(s):  
Acid Gas ◽  

2018 ◽  
Author(s):  
Huong T. D. Nguyen ◽  
Y B. N. Tran ◽  
Hung N. Nguyen ◽  
Tranh C. Nguyen ◽  
Felipe Gándara ◽  
...  

<p>Three novel lanthanide metal˗organic frameworks (Ln-MOFs), namely MOF-590, -591, and -592 were constructed from a naphthalene diimide tetracarboxylic acid. Gas adsorption measurements of MOF-591 and -592 revealed good adsorption of CO<sub>2</sub> (low pressure, at room temperature) and moderate CO<sub>2</sub> selectivity over N<sub>2</sub> and CH<sub>4</sub>. Accordingly, breakthrough measurements were performed on a representative MOF-592, in which the separation of CO<sub>2</sub> from binary mixture containing N<sub>2</sub> and CO<sub>2</sub> was demonstrated without any loss in performance over three consecutive cycles. Moreover, MOF-590, MOF-591, and MOF-592 exhibited catalytic activity in the one-pot synthesis of styrene carbonate from styrene and CO<sub>2</sub> under mild conditions (1 atm CO<sub>2</sub>, 80 °C, and solvent-free). Among the new materials, MOF-590 revealed a remarkable efficiency with exceptional conversion (96%), selectivity (95%), and yield (91%). </p><br>


CORROSION ◽  
1960 ◽  
Vol 16 (10) ◽  
pp. 503t-506t ◽  
Author(s):  
KENNETH L. MOORE

Abstract Various corrosion problems are described which have occurred in a large diethanolamine (DEA) system that removes hydrogen sulfide from refinery gas streams and a liquid propane-butane stream. These include reboiler corrosion, rich DEA corrosion, stress corrosion cracking, and corrosion-erosion. The effect of the problems on system operation is discussed, as well as the means of minimizing the problems. Electrical resistance measuring device data indicate the importance of keeping the solution loading below 0.34 mol of acid gas (H2S + CO2) per mol of DEA to minimize the corrosion in the rich DEA. Data from this source also show the relationship between general reboiler corrosion and solution contamination. 8.4.3


ACS Omega ◽  
2021 ◽  
Author(s):  
Nasrin Salimi Darani ◽  
Reza Mosayebi Behbahani ◽  
Yasaman Shahebrahimi ◽  
Afshin Asadi ◽  
Amir H. Mohammadi

2020 ◽  
Vol 124 (49) ◽  
pp. 26801-26813
Author(s):  
Dayton J. Vogel ◽  
Zachary R. Lee ◽  
Caitlin A. Hanson ◽  
Susan E. Henkelis ◽  
Caris M. Smith ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document