adsorption of co
Recently Published Documents


TOTAL DOCUMENTS

726
(FIVE YEARS 85)

H-INDEX

67
(FIVE YEARS 6)

Chemosensors ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 30
Author(s):  
Guochao Qian ◽  
Jin Hu ◽  
Shan Wang ◽  
Weiju Dai ◽  
Qu Zhou

Dissolved gas analysis (DGA) is recognized as one of the most reliable methods in transformer fault diagnosis technology. In this paper, three characteristic gases of transformer oil (CO, C2H4, and CH4) were used in conjunction with a Cr-decorated InN monolayer according to first principle calculations. The adsorption performance of Cr–InN for these three gases were studied from several perspectives such as adsorption structures, adsorption energy, electron density, density of state, and band gap structure. The results revealed that the Cr–InN monolayer had good adsorption performance with CO and C2H4, while the band gap of the monolayer slightly changed after the adsorption of CO and C2H4. Additionally, the adsorption property of the Cr–InN monolayer on CH4 was acceptable and a significant response was simultaneously generated. This paper provides the first insights regarding the possibility of Cr-doped InN monolayers for the detection of gases dissolved in oil.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 55
Author(s):  
Alexander L. Kustov ◽  
Leonid M. Kustov

The formation of complexes and disproportionation of nitrogen oxides (NO, N2O) on cationic forms of LTA, FAU, and MOR zeolites was investigated by diffuse-reflectance IR spectroscopy. N2O is adsorbed on the samples under study in the molecular form and the frequencies of the first overtone of the stretching vibrations ν10–2 and the combination bands of the stretching vibrations with other vibrational modes for N2O complexes with cationic sites in zeolites (ν30–1 + ν10–1, ν10–1 + δ0–2) are more significantly influenced by the nature of the zeolite. The presence of several IR bands in the region of 2400–2600 cm−1 (the ν10–1 + δ0–2 transitions) for different zeolite types was explained by the availability of different localization sites for cations in these zeolites. The frequencies in this region also depend on the nature of the cation (its charge and radius). The data can be explained by the specific geometry of the N2O complex formed, presumably two-point adsorption of N2O on a cation and a neighboring oxygen atom of the framework. Adsorption of CO or CH4 on the samples with preliminarily adsorbed N2O at 20–180 °C does not result in any oxidation of these molecules. NO+ and N2O3 species formed by disproportionation of NO are capable of oxidizing CO and CH4 molecules to CO2, whereas NOx is reduced simultaneously to N2 or N2O. The peculiarities in the behavior of cationic forms of different zeolites with respect to adsorbed nitrogen oxides determined by different density and localization of cations have been established.


2021 ◽  
Author(s):  
Lei Lu ◽  
Xiaopeng Zhu ◽  
Shaomang Wang ◽  
Taozhu Li ◽  
Shicheng Yan ◽  
...  

Abstract In this article, the roles of surface-active sites in dominating photoelectron selectivity for CO2 reduction products are well demonstrated over photocatalyst models of {100} SrTiO3 and {110} SrTiO3. On the easily exposed {100} facets terminated with Sr-O atoms, photoelectrons are of 8 mol % for CH4 and 92 mol % for CO generation. The Sr-O-Ti configuration in the {110} facets could enrich the surface charge density due to the lower interface resistance for higher photocatalytic efficiency (1.6-fold). The dual sites of Ti and adjacent Sr atoms are active for strong adsorption and activation of the generated CO* species from primary CO2 reduction on the surface, thus kinetically favoring the activity of photoelectrons (73 mol %) in hydrogenation for CH2* species and hence CH4 product. Inversely, the poor CH4 selectivity is due to difficulty in subsequent photoelectron reduction reaction by the weak adsorption of CO* at the single-Sr site on the {100} facets, independent of the electron and proton concentration. Our results may offer some illuminating insights into the design of a highly efficient photocatalyst for selective CO2 reduction.


Author(s):  
Changheng Li ◽  
Qing Huang ◽  
Haixiang Zhang ◽  
Qingqing Wang ◽  
Rixin Xue ◽  
...  

Reuse of waste from Hami melon (cantaloupes) straws (HS) mingled with polypropylene (PP) ropes is necessary and beneficial to mitigate environmental pollution. The objective of this study was to investigate the characteristics and mechanisms of Cd2+ adsorption on biochars produced by co-pyrolysis of HS-PP with various mixing ratios. N2-sorption, scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), elemental analysis, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermal gravity, and differential thermal gravity (TG/DTG) were applied to evaluate the physicochemical properties of materials. Batch adsorption experiments were carried out for investigating the effects of initial pH, Cd2+ concentration, and adsorption time. It was found that the Langmuir and pseudo-second-order models fitted best for the experimental data, indicating the dominant adsorption of co-pyrolysis biochars is via monolayer adsorption. Biochar derived at 4/1 mixing ratio of HS/PP by weight percentage had the highest adsorption capacity of 108.91 mg·g−1. Based on adsorption isotherm and kinetic analysis in combined with EDS, FTIR, and XRD analysis, it was concluded that the main adsorption mechanism of co-pyrolysis biochar involved the surface adsorption, cation exchange, complexation of Cd2+ with surface functional groups, and chemical precipitation. This study also demonstrates that agricultural wastes to biochar is a sustainable way to circular economy.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6415
Author(s):  
Navjot Kaur ◽  
Neetu Goel ◽  
Michael Springborg ◽  
Mohammad Molayem

Molecular level insights into the mechanism and thermodynamics of CO oxidation by a (TiO2)6 cluster have been obtained through density functional calculations. Thereby, in this study, as an example, two different structural isomers of (TiO2)6 are considered with the purpose of understanding the interplay between local structure and activity for the CO oxidation reaction. Active sites in the two isomeric forms were identified on the basis of global and local reactivity descriptors. For the oxidation of CO to CO2, the study considered both sequential and simultaneous adsorption of CO and O2 on (TiO2)6 cluster through the ER and LH mechanisms, respectively. Three different pathways were obtained for CO oxidation by (TiO2)6 cluster, and the mechanistic route of each pathway were identified by locating the transition-state and intermediate structures. The effect of temperature on the rate of the reaction was investigated within the harmonic approximation. The structure-dependent activity of the cluster was rationalized through reactivity descriptors and analysis of the frontier orbitals.


2021 ◽  
pp. 1-8
Author(s):  
Kosar Zarifi ◽  
Farnaz Rezaei ◽  
Seyed Mehdi Seyed Alizadeh

Carbon monoxide (CO) is known as a deathful gas produced by burning of hydrocarbons in a lack of enough oxygen, in which breathing CO leads to serious issues on human life health quality. Therefore, adsorption of CO gas is an essential task for diagnosis or removal of this dreadful gas in environment. To do this, a HEME-like model of iron-nitrogen-doped beryllium oxide (FeNBeO) monolayer was investigated for adsorbing CO gas by performing density functional theory (DFT) calculations. Two models were obtained for this process, in which relaxation of CO with C-head or O-head towards Fe region of monolayer. The results indicated that the formation of FeNBeO-CO model could be achieved more favorable than the formation of FeNBeO-OC model. The obtained optimized geometers and energies all approved this achievement for favorability of FeNBeO-CO model formation. Moreover, molecular orbital based electronic features indicated variations of such features for the models upon adsorption of CO substance, in which the models could be detectable in a sensor function for the existence of CO gas in the environment. As a consequence, the investigated FeNBeO monolayer could be proposed useful for adsorption of CO gas at least for the CO deathful gas diagnosis purposes.


Sign in / Sign up

Export Citation Format

Share Document