scholarly journals Asymptotic analysis of oscillating parametric integrals and ordinary boundary value problems at resonance

2006 ◽  
Vol 313 (1) ◽  
pp. 218-233 ◽  
Author(s):  
A. Cañada ◽  
D. Ruiz
2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Bingzhi Sun ◽  
Weihua Jiang

Abstract By defining the Banach spaces endowed with the appropriate norm, constructing a suitable projection scheme, and using the coincidence degree theory due to Mawhin, we study the existence of solutions for functional boundary value problems at resonance on the half-line with $\operatorname{dim}\operatorname{Ker}L = 1$ dim Ker L = 1 . And an example is given to show that our result here is valid.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Yousef Gholami

Abstract This investigation is devoted to the study of a certain class of coupled systems of higher-order Hilfer fractional boundary value problems at resonance. Combining the coincidence degree theory with the Lipschitz-type continuity conditions on nonlinearities, we present some existence and uniqueness criteria. Finally, to practically implement the obtained theoretical criteria, we give an illustrative application.


1995 ◽  
Vol 18 (4) ◽  
pp. 705-710 ◽  
Author(s):  
Chaitan P. Gupta

Letf:[0,1]×R2→Rbe function satisfying Caratheodory's conditions ande(t)∈L1[0,1]. Letη∈(0,1),ξi∈(0,1),ai≥0,i=1,2,…,m−2, with∑i=1m−2ai=1,0<ξ1<ξ2<…<ξm−2<1be given. This paper is concerned with the problem of existence of a solution for the following boundary value problemsx″(t)=f(t,x(t),x′(t))+e(t),0<t<1,x′(0)=0,x(1)=x(η),x″(t)=f(t,x(t),x′(t))+e(t),0<t<1,x′(0)=0,x(1)=∑i=1m−2aix(ξi).Conditions for the existence of a solution for the above boundary value problems are given using Leray Schauder Continuation theorem.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Kareem Alanazi ◽  
Meshal Alshammari ◽  
Paul Eloe

Abstract A quasilinearization algorithm is developed for boundary value problems at resonance. To do so, a standard monotonicity condition is assumed to obtain the uniqueness of solutions for the boundary value problem at resonance. Then the method of upper and lower solutions and the shift method are applied to obtain the existence of solutions. A quasilinearization algorithm is developed and sequences of approximate solutions are constructed, which converge monotonically and quadratically to the unique solution of the boundary value problem at resonance. Two examples are provided in which explicit upper and lower solutions are exhibited.


2016 ◽  
Vol 53 (1) ◽  
pp. 42-52
Author(s):  
Katarzyna Szymańska-Dȩbowska

The paper focuses on existence of solutions of a system of nonlocal resonant boundary value problems , where f : [0, 1] × ℝk → ℝk is continuous and g : [0, 1] → ℝk is a function of bounded variation. Imposing on the function f the following condition: the limit limλ→∞f(t, λ a) exists uniformly in a ∈ Sk−1, we have shown that the problem has at least one solution.


Sign in / Sign up

Export Citation Format

Share Document