scholarly journals Rank one perturbations and the zeros of paraorthogonal polynomials on the unit circle

2007 ◽  
Vol 329 (1) ◽  
pp. 376-382 ◽  
Author(s):  
Barry Simon
Keyword(s):  
2021 ◽  
Vol 15 (3) ◽  
Author(s):  
André C. M. Ran ◽  
Michał Wojtylak

AbstractGeneral properties of eigenvalues of $$A+\tau uv^*$$ A + τ u v ∗ as functions of $$\tau \in {\mathbb {C} }$$ τ ∈ C or $$\tau \in {\mathbb {R} }$$ τ ∈ R or $$\tau ={{\,\mathrm{{e}}\,}}^{{{\,\mathrm{{i}}\,}}\theta }$$ τ = e i θ on the unit circle are considered. In particular, the problem of existence of global analytic formulas for eigenvalues is addressed. Furthermore, the limits of eigenvalues with $$\tau \rightarrow \infty $$ τ → ∞ are discussed in detail. The following classes of matrices are considered: complex (without additional structure), real (without additional structure), complex H-selfadjoint and real J-Hamiltonian.


10.37236/1734 ◽  
2003 ◽  
Vol 10 (1) ◽  
Author(s):  
David Arthur

An arc-representation of a graph is a function mapping each vertex in the graph to an arc on the unit circle in such a way that adjacent vertices are mapped to intersecting arcs. The width of such a representation is the maximum number of arcs passing through a single point. The arc-width of a graph is defined to be the minimum width over all of its arc-representations. We extend the work of Barát and Hajnal on this subject and develop a generalization we call restricted arc-width. Our main results revolve around using this to bound arc-width from below and to examine the effect of several graph operations on arc-width. In particular, we completely describe the effect of disjoint unions and wedge sums while providing tight bounds on the effect of cones.


1970 ◽  
Vol 11 (8) ◽  
pp. 2415-2424 ◽  
Author(s):  
M. Anthea Grubb ◽  
D. B. Pearson

1972 ◽  
Vol 46 ◽  
pp. 97-109
Author(s):  
Susan Williamson

Let k denote the quotient field of a complete discrete rank one valuation ring R of unequal characteristic and let p denote the characteristic of R̅; assume that R contains a primitive pth root of unity, so that the absolute ramification index e of R is a multiple of p — 1, and each Gallois extension K ⊃ k of degree p may be obtained by the adjunction of a pth root.


2020 ◽  
Vol 11 (2) ◽  
pp. 1-33
Author(s):  
Haibing Lu ◽  
Xi Chen ◽  
Junmin Shi ◽  
Jaideep Vaidya ◽  
Vijayalakshmi Atluri ◽  
...  

Author(s):  
Constanze Liaw ◽  
Sergei Treil ◽  
Alexander Volberg

Abstract The classical Aronszajn–Donoghue theorem states that for a rank-one perturbation of a self-adjoint operator (by a cyclic vector) the singular parts of the spectral measures of the original and perturbed operators are mutually singular. As simple direct sum type examples show, this result does not hold for finite rank perturbations. However, the set of exceptional perturbations is pretty small. Namely, for a family of rank $d$ perturbations $A_{\boldsymbol{\alpha }}:= A + {\textbf{B}} {\boldsymbol{\alpha }} {\textbf{B}}^*$, ${\textbf{B}}:{\mathbb C}^d\to{{\mathcal{H}}}$, with ${\operatorname{Ran}}{\textbf{B}}$ being cyclic for $A$, parametrized by $d\times d$ Hermitian matrices ${\boldsymbol{\alpha }}$, the singular parts of the spectral measures of $A$ and $A_{\boldsymbol{\alpha }}$ are mutually singular for all ${\boldsymbol{\alpha }}$ except for a small exceptional set $E$. It was shown earlier by the 1st two authors, see [4], that $E$ is a subset of measure zero of the space $\textbf{H}(d)$ of $d\times d$ Hermitian matrices. In this paper, we show that the set $E$ has small Hausdorff dimension, $\dim E \le \dim \textbf{H}(d)-1 = d^2-1$.


2021 ◽  
Vol 143 (2) ◽  
pp. 301-335
Author(s):  
Jendrik Voss ◽  
Ionel-Dumitrel Ghiba ◽  
Robert J. Martin ◽  
Patrizio Neff

AbstractWe consider the volumetric-isochoric split in planar isotropic hyperelasticity and give a precise analysis of rank-one convexity criteria for this case, showing that the Legendre-Hadamard ellipticity condition separates and simplifies in a suitable sense. Starting from the classical two-dimensional criterion by Knowles and Sternberg, we can reduce the conditions for rank-one convexity to a family of one-dimensional coupled differential inequalities. In particular, this allows us to derive a simple rank-one convexity classification for generalized Hadamard energies of the type $W(F)=\frac{\mu }{2} \hspace{0.07em} \frac{\lVert F \rVert ^{2}}{\det F}+f(\det F)$ W ( F ) = μ 2 ∥ F ∥ 2 det F + f ( det F ) ; such an energy is rank-one convex if and only if the function $f$ f is convex.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1134
Author(s):  
Kenta Higuchi ◽  
Takashi Komatsu ◽  
Norio Konno ◽  
Hisashi Morioka ◽  
Etsuo Segawa

We consider the discrete-time quantum walk whose local dynamics is denoted by a common unitary matrix C at the perturbed region {0,1,⋯,M−1} and free at the other positions. We obtain the stationary state with a bounded initial state. The initial state is set so that the perturbed region receives the inflow ωn at time n(|ω|=1). From this expression, we compute the scattering on the surface of −1 and M and also compute the quantity how quantum walker accumulates in the perturbed region; namely, the energy of the quantum walk, in the long time limit. The frequency of the initial state of the influence to the energy is symmetric on the unit circle in the complex plain. We find a discontinuity of the energy with respect to the frequency of the inflow.


Sign in / Sign up

Export Citation Format

Share Document