Riemann problem and wave interactions for the one-dimensional relativistic string equation in Minkowski space

2020 ◽  
Vol 486 (2) ◽  
pp. 123932
Author(s):  
Jianli Liu ◽  
Ruixi Liu
2019 ◽  
Vol 21 (03) ◽  
pp. 1850003 ◽  
Author(s):  
Xuemei Zhang ◽  
Meiqiang Feng

In this paper, bifurcation diagrams and exact multiplicity of positive solution are obtained for the one-dimensional prescribed mean curvature equation in Minkowski space in the form of [Formula: see text] where [Formula: see text] is a bifurcation parameter, [Formula: see text], the radius of the one-dimensional ball [Formula: see text], is an evolution parameter. Moreover, we make a comparison between the bifurcation diagram of one-dimensional prescribed mean curvature equation in Euclid space and Minkowski space. Our methods are based on a detailed analysis of time maps.


Author(s):  
В.М. Головизнин ◽  
Д.Ю. Горбачев ◽  
А.М. Колокольников ◽  
П.А. Майоров ◽  
П.А. Майоров ◽  
...  

Предложена новая неявная безусловно устойчивая схема для одномерных уравнений мелкой воды, сохраняющая все особенности явной схемы Кабаре. Проведен анализ диссипативных и дисперсионных свойств новой схемы и предложен алгоритм ее численного решения. Приведены примеры решения задачи о распаде разрыва. A new implicit unconditionally stable scheme for the one-dimensional shallow water equations is proposed. This implicit scheme retains all the features of the explicit CABARET (Compact Accurately Boundary Adjusting-REsolution Technique) difference scheme. Dissipative and dispersion properties of this new scheme are analyzed; an algorithm of its numerical solution is discussed. Some examples of solving the Riemann problem are considered.


Author(s):  
Mark J. Ablowitz ◽  
Gino Biondini ◽  
Qiao Wang

The genus-1 Kadomtsev–Petviashvili (KP)-Whitham system is derived for both variants of the KP equation; namely the KPI and KPII equations. The basic properties of the KP-Whitham system, including symmetries, exact reductions and its possible complete integrability, together with the appropriate generalization of the one-dimensional Riemann problem for the Korteweg–de Vries equation are discussed. Finally, the KP-Whitham system is used to study the linear stability properties of the genus-1 solutions of the KPI and KPII equations; it is shown that all genus-1 solutions of KPI are linearly unstable, while all genus-1 solutions of KPII are linearly stable within the context of Whitham theory.


Author(s):  
Sribatsa Nanda

AbstractWe consider in this paper a topology (which we call the A-topology) on Minkowski space, the four-dimensional space–time continuum of special relativity and derive its group of homeomorphisms. We define the A-topology to be the finest topology on Minkowski space with respect to which the induced topology on time-like and light-like lines is one-dimensional Euclidean and the induced topology on space-like hyperplanes is three- dimensional Euclidean. It is then shown that the group of homeomorphisms of this topology is precisely the one generated by the inhomogeneous Lorentz group and the dilatations.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Richard De la cruz ◽  
Juan Galvis ◽  
Juan Carlos Juajibioy ◽  
Leonardo Rendón

We study the one-dimensional Riemann problem for a hyperbolic system of three conservation laws of Temple class. This system is a simplification of a recently proposed system of five conservations laws by Bouchut and Boyaval that model viscoelastic fluids. An important issue is that the considered3×3system is such that every characteristic field is linearly degenerate. We show an explicit solution for the Cauchy problem with initial data inL∞. We also study the Riemann problem for this system. Under suitable generalized Rankine-Hugoniot relation and entropy condition, both existence and uniqueness of particular delta-shock type solutions are established.


Sign in / Sign up

Export Citation Format

Share Document