Effects of heat treatment on residual stresses in the laser powder bed fusion of 316L stainless steel: Finite element predictions and neutron diffraction measurements

2020 ◽  
Vol 57 ◽  
pp. 641-653 ◽  
Author(s):  
Richard J. Williams ◽  
Filippo Vecchiato ◽  
Joe Kelleher ◽  
Mark R. Wenman ◽  
Paul A. Hooper ◽  
...  
2019 ◽  
Vol 164 ◽  
pp. 107534 ◽  
Author(s):  
Hahn Choo ◽  
Kin-Ling Sham ◽  
John Bohling ◽  
Austin Ngo ◽  
Xianghui Xiao ◽  
...  

Author(s):  
C. M. Davies ◽  
P. Sandmann ◽  
T. Ronneberg ◽  
P. A. Hooper ◽  
Saurabh Kabra

Abstract Uniaxial samples have been manufactured for tension/compression testing from 316L stainless steel by laser powder bed fusion (LPBF). Samples manufactured by LPBF are known to contain high levels of residual stresses. These uniaxial samples were built from a solid cylindrical rod and subsequently machined to reduce the central cross section of the sample to the required gauge diameter and improve the surface finish. Finite element (FE) models have been developed to simulate the LPBF process of the rods, their removal from the build plate and subsequent machining into the tension/compression samples. High tensile residual stresses were predicted at the surface of the samples, balances by similar magnitude compressive stresses along their axis. Post machining however, these stresses were reduced by around 80% or more. Residual stress measurements were performed on the samples post machining using the neutron diffraction techniques. These measurements confirmed that negligible residual stresses remained in the samples post removal from the build plate and machining.


Sign in / Sign up

Export Citation Format

Share Document