Coil-less electromagnetic forming process with uniform-pressure characteristics for shaping sheet metals

2021 ◽  
Vol 70 ◽  
pp. 140-151
Author(s):  
Quanliang Cao ◽  
Xian Li ◽  
Zhenhao Li ◽  
Limeng Du ◽  
Liangyu Xia ◽  
...  
2014 ◽  
Vol 611-612 ◽  
pp. 723-730
Author(s):  
Chandrahas Patel ◽  
Sachin D. Kore

Electromagnetic Forming (EMF) is a high-speed forming process that can be applied for shaping, joining and cutting of workpieces made of electrically conductive material eg. aluminium. This paper proposes a dual electromagnetic forming method. Energy efficiency of the dual electromagnetic forming is compared with the single sided electromagnetic forming using FEM simulations. In uniform pressure rectangular coil, the top layer of the coil assists in the deformation of the workpiece while the bottom layer hinders the workpiece deformation.To make the bottom layer of the coil also to assist in the deformation of the workpiece, a uniform pressure rectangular coil is designed and placed between the two sheet metal workpiece. The efficiency of the two processes are compared by determing the maximum deformation obtained for each case.


Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 1963 ◽  
Author(s):  
Xiaohui Cui ◽  
Dongyang Qiu ◽  
Lina Jiang ◽  
Hailiang Yu ◽  
Zhihao Du ◽  
...  

The coil is the most important component in electromagnetic forming. Two important questions in electromagnetic forming are how to obtain the desired magnetic force distribution on the sheet and increase the service life of the coil. A uniform pressure coil is widely used in sheet embossing, bulging, and welding. However, the coil is easy to break, and the manufacturing process is complex. In this paper, a new uniform-pressure coil with a planar structure was designed. A three-dimensional (3D) finite element model was established to analyze the effect of the main process parameters on magnetic force distribution. By comparing the experimental results, it was found that the simulation results have a higher analysis precision. Based on the simulation results, the resistivity of the die, spacing between the left and right parts of the coil, relative position between coil and sheet, and sheet width significantly affect the distribution of magnetic force. Compared with the structure and magnetic force on a traditional uniform pressure coil, the planar uniform pressure coil can produce a uniform magnetic force distribution on the sheet, reduce the manufacturing difficulty, reduce manufacturing cost, and enhance the service life for the coil.


2019 ◽  
Vol 33 (6) ◽  
pp. 2809-2815 ◽  
Author(s):  
Seung-Min Tak ◽  
Han-Bin Kang ◽  
In-Seok Baek ◽  
Seok-Soon Lee

2016 ◽  
Vol 725 ◽  
pp. 630-635 ◽  
Author(s):  
Taro Tokuda ◽  
Takeshi Uemori ◽  
Tetsuya Yoshida ◽  
Michihiro Takiguchi ◽  
Fusahito Yoshida

In sheet metal industries, press-formed sheet elements are usually adhesively bonded together at the final stage of assembly. Instead of such a conventional process, the present authors proposed a new technique that first flat sheets are adhesively bonded together and then press-formed into the final products. In previous study, the problem of the die-bending (V-bending and hat-shaped bending) with symmetrical shape has studied. In this study, asymmetric-shaped bending of adhesively bonded sheet metals was investigated by experiments and FEM analysis method. In the case of asymmetric-shaped bending, it was found that the timing of contact from the die corner to the die hypotenuse is early in the press-forming process compared with symmetrical bending (V-bending and hat-shaped bending). For the FEM analysis results, the maximum shear strain in asymmetric-shaped bending was smaller than that in symmetric-shaped bending at the hat-shaped side. Thus, the shape of the die has a large influence on the die-bending of adhesively bonded sheet metals.


2015 ◽  
Vol 19 ◽  
pp. 171-182 ◽  
Author(s):  
Weiren Xiong ◽  
Wenping Wang ◽  
Min Wan ◽  
Xinjun Li

2019 ◽  
Vol 969 ◽  
pp. 552-557
Author(s):  
Kuntal Maji

Fabricating three dimensional shaped surfaces from flat sheet metals by laser forming, both out-of-plane and in-plane deformations are required. This article presents the modeling of coupling mechanism activated laser forming of sheet metals based on experimental data for prediction and optimization of bending and thickening deformations. Experiments were performed based on a central composite design of experiments on coupling mechanism based laser metal forming process considering the input process parameters like laser power, scan speed and spot diameter, bending and thickening were taken as the outputs. Neural network and neuro-fuzzy system-based models were developed to carry out both forward and inverse modeling of the laser metal forming process under the coupling mechanism. Multi-objective optimization based on the non-dominated sorting genetic algorithm was used to obtain multiple optimal solutions to achieve different amounts of out-of-plane and in-plane deformations. The proposed method could guide for a suitable selection of the process parameters to produce three-dimensional shapes utilizing coupling mechanism-based laser forming using multiple laser line heating.


Sign in / Sign up

Export Citation Format

Share Document