Geometric issues in V-bending electromagnetic forming process of 2024-T3 aluminum alloy

2015 ◽  
Vol 19 ◽  
pp. 171-182 ◽  
Author(s):  
Weiren Xiong ◽  
Wenping Wang ◽  
Min Wan ◽  
Xinjun Li
2021 ◽  
Vol 70 ◽  
pp. 140-151
Author(s):  
Quanliang Cao ◽  
Xian Li ◽  
Zhenhao Li ◽  
Limeng Du ◽  
Liangyu Xia ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 808
Author(s):  
Wei Feng ◽  
Chaoyi Jin ◽  
Jiadong Deng ◽  
Wuhao Zhuang

This work aimed to study the deformation characteristics and microstructure of AA6063 aluminum alloy component with complex shape manufactured by cold orbital forming processing. The material flowing behavior was analyzed by Finite Element (FE) simulation and forming experiments were carried out using bar blank with different lengths. The microstructure of the boss zone cut from the formed samples was observed using scanning electron microscopy (SEM) and electron back-scatter diffraction (EBSD). FE simulation and experiment results both showed the aluminum base can be formed using cold orbital forming process. The distributions of the effective strain of the component with different blank lengths were almost the same, and the effective strain was bigger at the boss and the flash as the forming finished. The material flow is complex, especially in the boss, and the folding defect was observed at the root of the boss. The distribution of Mg2Si strengthening precipitate is more homogeneous in the matrix, has a different shape, and shows directivity at different position of boss zone. The grains are elongated, and the extent is different at different positions of the boss zone after cold orbital forming, and the crystal orientation discrepancy is smaller in the component main body and bigger in the boss zone. Subsequent forming process and blank optimization need to be further researched to improve forming quality.


2012 ◽  
Vol 452-453 ◽  
pp. 81-85
Author(s):  
M.H. Chen ◽  
Y.Y. Cao ◽  
W. Chen ◽  
G.L. Chen

2019 ◽  
Vol 33 (6) ◽  
pp. 2809-2815 ◽  
Author(s):  
Seung-Min Tak ◽  
Han-Bin Kang ◽  
In-Seok Baek ◽  
Seok-Soon Lee

2018 ◽  
Vol 920 ◽  
pp. 70-76 ◽  
Author(s):  
Bao Hang Zhu ◽  
Yi Xi Zhao ◽  
Zhong Qi Yu ◽  
Hui Yan

The T-section aluminum alloy window trim strip sheets are used to improve vehicle appearance. As the mobile scenery line, these window trim strips with claws need high forming accuracy to meet good assembly quality requirement. The top portion of the T-section sheet is stamped to form an edge flange structure. Springback control is essential in forming process. In this paper, the influence of the window trim strip geometric parameters on forming springback is studied. Some finite element models of the process were built with the Dynaform software. The simulation results were verified experimentally. The main conclusions include as belows: The different heights of the stiffeners part in T-section change the stiffness of the part. Although the stiffeners part does not participate in the forming, it also has springback in the forming process. So, it is necessary to study the influence of the flanging part width (W) and the stiffeners part height (H) of the T-section on springback. We set W to 15 mm and change the value of H value according to the real product. The value of springback increases with the increase of H value in the beginning. After ratio of H/W increases to 0.6, the value of springback fluctuates with the increase of H value. When ratio of H/W is about 0.5, the springback values are mostly less than ± 0.5 mm in key sections, which is acceptable.


2017 ◽  
Vol 746 ◽  
pp. 3-9
Author(s):  
Vladimir G. Kolobov ◽  
Evgenii V. Aryshenskii ◽  
Yaroslav A. Erisov ◽  
Alexander Nam ◽  
Maksim S. Tepterev

The present study investigates the process of beverage can end forming from 5182 aluminum alloy. Stress-strain state during forming is analyzed using finite element method in PAM-Stamp 2G, and fracturing probability is evaluated based on V.L. Kolmogorov’s fracture criterion. It is established, that stress state does not provide the sufficient plasticity margin during ends forming. Blank material plasticity resource is depleted during preliminary and reverse drawing stages, defects accumulation during countersink forming is negligible. Minimum relative elongation value, responsible for fracture-free end forming, is 6% in the rolling direction.


Sign in / Sign up

Export Citation Format

Share Document