Changes in the shelf macrobenthic community over large temporal and spatial scales in the Bohai Sea, China

2007 ◽  
Vol 67 (3-4) ◽  
pp. 312-321 ◽  
Author(s):  
H. Zhou ◽  
Z.N. Zhang ◽  
X.S. Liu ◽  
L.H. Tu ◽  
Z.S. Yu
2018 ◽  
Vol 25 (2) ◽  
pp. 229
Author(s):  
Zhongyi LI ◽  
Qiang WU ◽  
Xiujuan SHAN ◽  
Tao YANG ◽  
Fangqun DAI ◽  
...  

2012 ◽  
Vol 47 (2) ◽  
pp. 125-132 ◽  
Author(s):  
Wang Yan ◽  
Huang Lin ◽  
Gu Haifeng ◽  
Li Shuang ◽  
Li Shaoshan

Larvae of many marine invertebrates must capture and ingest particulate food in order to develop to metamorphosis. These larvae use only a few physical processes to capture particles, but implement these processes using diverse morphologies and behaviors. Detailed understanding of larval feeding mechanism permits investigators to make predictions about feeding performance, including the size spectrum of particles larvae can capture and the rates at which they can capture them. In nature, larvae are immersed in complex mixtures of edible particles of varying size, density, flavor, and nutritional quality, as well as many particles that are too large to ingest. Concentrations of all of these components vary on fine temporal and spatial scales. Mechanistic models linking larval feeding mechanism to performance can be combined with data on food availability in nature and integrated into broader bioenergetics models to yield increased understanding of the biology of larvae in complex natural habitats.


Sign in / Sign up

Export Citation Format

Share Document