Predictive modeling of transition undeformed chip thickness in ductile-regime micro-machining of single crystal brittle materials

2009 ◽  
Vol 209 (7) ◽  
pp. 3306-3319 ◽  
Author(s):  
Siva Venkatachalam ◽  
Xiaoping Li ◽  
Steven Y. Liang
2011 ◽  
Vol 487 ◽  
pp. 58-62
Author(s):  
Yun Feng Peng ◽  
Zhi Qiang Liang ◽  
Yong Bo Wu ◽  
Yin Biao Guo ◽  
T. Jiang ◽  
...  

A theoretical discussion has been presented for the ductile chip formation in grinding of brittle materials. The single abrasive grit was dealt with a top-rounded cutter removing material of varying undeformed chip thickness. The force model in the chip formation zone was established. The stress analysis showed that larger compressive stress and shear stress can be generated in the chip formation zone, which shields the growth of pre-existing flaws in the material by suppressing the stress intensity factor. When the stress intensify factor is smaller than fracture toughness and the resolved shear stress exceeds the critical flow stress of the material, the ductile chip is formed. Experiments of monocrystal silicon grinding were conducted. The results show that the thrust force is much larger than the cutting force, which ensures the larger compressive stress in the chip formation zone and the formation of ductile chip.


2015 ◽  
Vol 667 ◽  
pp. 142-148 ◽  
Author(s):  
Yan Yan Yan ◽  
Run Xing Wang ◽  
Bo Zhao

Single crystal silicon has both important application value in the fields of micro-optics and MEMS, and it has been considered as one of the most difficult-to-cut materials because of its hardness and brittleness. Removal mechanism of the silicon was discussed, and the model of undeformed chip thickness was established in this article. According to the data of micro-groove surface roughness from the diamond fly-cutting experiment, the nonlinear relationship curve, between the largest undeformed chip thicknesshmaxand microgroove surface roughnessRa,were obtained using Gaussian-fitting principle, and the regression equation of the fitting curve was also got. Thus the prediction mathematical model of microgroove surface roughness was derived. The influence laws of the main working parameters on theRawere obtained based on the result of this experiment and the response surface of the prediction model, and some conclusions were summarized: the surface roughnessRaof microgroove in the single crystal silicon decreases with the decrease of the cutting depthap, the feed f and the increase of the spindle speednunder the diamond fly-cutting; the experimental results also showed that feedfaffects the value ofRavery much, cutting depthapless, and spindle speednthe least.


2004 ◽  
Vol 47 (1) ◽  
pp. 2-7 ◽  
Author(s):  
Hisanobu TERAI ◽  
Minghui HAO ◽  
Koichi KIKKAWA ◽  
Yoshio MIZUGAKI

Sign in / Sign up

Export Citation Format

Share Document