Cold metal transfer joining aluminum alloys-to-galvanized mild steel

2013 ◽  
Vol 213 (10) ◽  
pp. 1753-1763 ◽  
Author(s):  
R. Cao ◽  
Gang Yu ◽  
J.H. Chen ◽  
Pei-Chung Wang
Author(s):  
R. Cao ◽  
Q. W. Xu ◽  
H. X. Zhu ◽  
G. J. Mao ◽  
Q. Lin ◽  
...  

In this study, cold metal transfer (CMT) plug welding of 1 mm thick Mg AZ31 to 1 mm thick hot-dipped galvanized mild steel (i.e., Q235) was studied. Welding tests were performed and the process variables optimized with Mg AZ61 wire and 100% argon shielding gas for a plug weld located in the center of the 25 mm overlap region. It was found that it is feasible to join 1 mm thick Mg AZ31 workpiece to 1 mm thick galvanized mild steel using CMT plug welding. The optimized process variables for CMT plug welding Mg AZ31-to-galvanized mild steel were a wire feed speed of 10.5 m/min, a predrilled hole with a diameter of 8 mm in Mg AZ31 workpiece and a welding time of 0.8 s. CMT plug welded Mg AZ31-to-galvanized mild steel joints were composed of the fusion zone between Mg AZ31 base metal and Mg weld metal, Mg weld metal (i.e., combined base metal, filler wire and Zn coating), and the brazing interface between magnesium weld metal and galvanized mild steel. The brazing interface mainly consisted of Al, Zn, Mg, Si intermetallic compounds and oxides (i.e., Fe3Al, Mg2Si, MgZn, and MgZn2), and magnesium solid solution. The static strength of CMT welded-brazed Mg AZ31-galvanized steel was determined primarily by the strength and area of the brazed interface and thickness of the intermetallic reaction layer.


Metals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 441
Author(s):  
Giovanna Cornacchia ◽  
Silvia Cecchel

The present research investigates the effects of different welding techniques, namely traditional metal inert gas (MIG), cold metal transfer (CMT), and fiber laser-MIG hybrid, on the microstructural and mechanical properties of joints between extruded EN AW 6181/6082-T6 and cast EN AC 42100-T6 aluminum alloys. These types of weld are very interesting for junctions of Al-alloys parts in the transportation field to promote the lightweight of a large scale chassis. The weld joints were characterized through various metallurgical methods including optical microscopy and hardness measurements to assess their microstructure and to individuate the nature of the intermetallics, their morphology, and distribution. The results allowed for the evaluation of the discrepancies between the welding technologies (MIG, CMT, fiber laser) on different aluminum alloys that represent an exhaustive range of possible joints of a frame. For this reason, both simple bar samples and real junctions of a prototype frame of a sports car were studied and, compared where possible. The study demonstrated the higher quality of innovative CMT and fiber laser-MIG hybrid welding than traditional MIG and the comparison between casting and extrusion techniques provide some inputs for future developments in the automotive field.


Materials ◽  
2018 ◽  
Vol 11 (5) ◽  
pp. 812 ◽  
Author(s):  
Xuewei Fang ◽  
Lijuan Zhang ◽  
Hui Li ◽  
Chaolong Li ◽  
Ke Huang ◽  
...  

Author(s):  
Zhenghua Rao ◽  
Jiangwei Liu ◽  
Pei-Chung Wang ◽  
Yunxiao Li ◽  
Shengming Liao

In this article, a three-dimensional (3D) transient unified model is developed to simulate the transport phenomena during the cold metal transfer (CMT) spot welding process of 1 mm thick aluminum AA6061-T6 and 1 mm thick galvanized mild steel (i.e., AISI 1009). The events of the CMT process are simulated, including arc generation and evolution; up-and-down movement of electrode, droplet formation and dipping into the weld pool; weld pool dynamics; zinc evaporation, and zinc vapor diffusion in the arc. The effects of the gap between the two workpieces and effects of zinc vapor evaporated from the steel surface on CMT process are studied. The results show that the arc temperature, velocity, and pressure keep changing during the CMT process, which is related to the variations of welding current, arc length, and zinc evaporation. It is found that the zinc evaporation leads to the extremely high arc pressure and the upward flow of zinc vapor near the steel surface, which would induce the arc instability and provide the drag force for the droplet impingement. The presence of the gap between the two workpieces can improve the expansion of the arc plasma, resulting in the smaller arc pressure and the more intensive upward flow of zinc vapor from the steel surface. The phenomena observed in the experiment are in agreement with the modeling results.


Sign in / Sign up

Export Citation Format

Share Document