Microstructure, microhardness and residual stress of laser additive manufactured CoCrFeMnNi high-entropy alloy subjected to laser shock peening

2020 ◽  
Vol 285 ◽  
pp. 116806 ◽  
Author(s):  
Zhaopeng Tong ◽  
Huaile Liu ◽  
Jiafei Jiao ◽  
Wangfan Zhou ◽  
Yu Yang ◽  
...  
2020 ◽  
Vol 35 ◽  
pp. 101417
Author(s):  
Zhaopeng Tong ◽  
Huaile Liu ◽  
Jiafei Jiao ◽  
Wangfan Zhou ◽  
Yu Yang ◽  
...  

2014 ◽  
Vol 891-892 ◽  
pp. 980-985 ◽  
Author(s):  
Niall Smyth ◽  
Philip E. Irving

This paper reports the effectiveness of residual stress fields induced by laser shock peening (LSP) to recover pristine fatigue life. Scratches 50 and 150 μm deep with 5 μm root radii were introduced into samples of 2024-T351 aluminium sheet 2 mm thick using a diamond tipped tool. LSP was applied along the scratch in a band 5 mm wide. Residual stress fields induced were measured using incremental hole drilling. Compressive residual stress at the surface was-78 MPa increasing to-204 MPa at a depth of 220 μm. Fatigue tests were performed on peened, unpeened, pristine and scribed samples. Scratches reduced fatigue lives by factors up to 22 and LSP restored 74% of pristine life. Unpeened samples fractured at the scratches however peened samples did not fracture at the scratches but instead on the untreated rear face of the samples. Crack initiation still occurred at the root of the scribes on or close to the first load cycle in both peened and unpeened samples. In peened samples the crack at the root of the scribe did not progress to failure, suggesting that residual stress did not affect initiation behaviour but instead FCGR. A residual stress model is presented to predict crack behaviour in peened samples.


Author(s):  
A. W. Warren ◽  
Y. B. Guo ◽  
S. C. Chen

Laser shock peening (LSP) is a surface treatment process to improve the surface integrity of metallic components. The nearly pure mechanical process of LSP results in favorable surface integrity such as compressive residual stress and improved surface material properties. Since LSP is a transient process with laser pulse duration time on the order of 40 ns, real time in-situ measurement of laser/material interaction is very challenging, if not impossible. A fundamental understanding of laser/material interactions is essential for LSP planning. Previous finite element simulations of LSP have been limited to a single laser shock location for both two and three dimensional modeling. However, actual LSP are performed in a massively parallel mode which involves almost simultaneous multi-laser/material interactions in order to induce uniform compressive residual stress across the entire surface of the workpiece. The massively parallel laser/material interactions have a significant compound/interfering effect on the resulting surface integrity of the workpiece. The numerical simulation of shock pressure as a function of time and space during LSP is another critical problem. The purpose of this paper is to investigate the effects of parallel multiple laser/material interactions on the stress/strain distributions in the workpiece during LSP of AISI 52100 steel. FEA simulations of LSP in single and multiple passes were performed with the developed spatial and temporal shock pressure model via a subroutine. The simulated residual stresses agree with the measured data in nature and trend, while magnitude can be influenced by the interactions between neighboring peening zones and the locations of residual stress measurement. Design-of-experiment (DOE) based simulations of massive parallel LSP were also performed to determine the effects of laser intensity, laser spot size, and peening spacing on stresses and strains. Increasing the laser intensity increases both the stress magnitude and affected depth. The use of smaller laser spot sizes decreases the largest magnitude of residual stress and also decreases the depth affected by LSP. Larger spot sizes have less energy attenuation and cause more plastic deformation. Spacing between peening zones is critical for the uniformity of mechanical properties across the surface. The greatest uniformity and largest stress magnitudes are achieved by overlapping of the laser spots.


Sign in / Sign up

Export Citation Format

Share Document