Structural Basis for Ca2+-regulated Muscle Relaxation at Interaction Sites of Troponin with Actin and Tropomyosin

2005 ◽  
Vol 352 (1) ◽  
pp. 178-201 ◽  
Author(s):  
Kenji Murakami ◽  
Fumiaki Yumoto ◽  
Shin-ya Ohki ◽  
Takuo Yasunaga ◽  
Masaru Tanokura ◽  
...  
2005 ◽  
Vol 45 (supplement) ◽  
pp. S158
Author(s):  
K. Murakami ◽  
F. Yumoto ◽  
S. Ohki ◽  
T. Yasunaga ◽  
M. Tanokura ◽  
...  

2018 ◽  
Author(s):  
Lilia Kaustov ◽  
Alexander Lemak ◽  
Hong Wu ◽  
Marco Faini ◽  
Scott Houliston ◽  
...  

ABSTRACTHistone H3K4 methylation is an epigenetic mark associated with actively transcribed genes. This modification is catalyzed by the mixed lineage leukaemia (MLL) family of histone methyltransferases including MLL1, MLL2, MLL3, MLL4, SET1A and SET1B. Catalytic activity of MLL proteins is dependent on interactions with additional conserved proteins but the structural basis for subunit assembly and the mechanism of regulation is not well understood. We used a hybrid methods approach to study the assembly and biochemical function of the minimally active MLL1 complex (MLL1, WDR5 and RbBP5). A combination of small angle X-ray scattering (SAXS), cross-linking mass spectrometry (XL-MS), NMR spectroscopy, and computational modeling were used to generate a dynamic ensemble model in which subunits are assembled via multiple weak interaction sites. We identified a new interaction site between the MLL1 SET domain and the WD40 repeat domain of RbBP5, and demonstrate the susceptibility of the catalytic function of the complex to disruption of individual interaction sites.


2019 ◽  
Author(s):  
Lilia Kaustov ◽  
Alexander Lemak ◽  
Hong Wu ◽  
Marco Faini ◽  
Lixin Fan ◽  
...  

Abstract Histone H3K4 methylation is an epigenetic mark associated with actively transcribed genes. This modification is catalyzed by the mixed lineage leukaemia (MLL) family of histone methyltransferases including MLL1, MLL2, MLL3, MLL4, SET1A and SET1B. The catalytic activity of this family is dependent on interactions with additional conserved proteins, but the structural basis for subunit assembly and the mechanism of regulation is not well understood. We used a hybrid methods approach to study the assembly and biochemical function of the minimally active MLL1 complex (MLL1, WDR5 and RbBP5). A combination of small angle X-ray scattering, cross-linking mass spectrometry, nuclear magnetic resonance spectroscopy and computational modeling were used to generate a dynamic ensemble model in which subunits are assembled via multiple weak interaction sites. We identified a new interaction site between the MLL1 SET domain and the WD40 β-propeller domain of RbBP5, and demonstrate the susceptibility of the catalytic function of the complex to disruption of individual interaction sites.


2019 ◽  
Vol 116 (10) ◽  
pp. 4256-4264 ◽  
Author(s):  
Ambroise Desfosses ◽  
Sigrid Milles ◽  
Malene Ringkjøbing Jensen ◽  
Serafima Guseva ◽  
Jacques-Philippe Colletier ◽  
...  

Assembly of paramyxoviral nucleocapsids on the RNA genome is an essential step in the viral cycle. The structural basis of this process has remained obscure due to the inability to control encapsidation. We used a recently developed approach to assemble measles virus nucleocapsid-like particles on specific sequences of RNA hexamers (poly-Adenine and viral genomic 5′) in vitro, and determined their cryoelectron microscopy maps to 3.3-Å resolution. The structures unambiguously determine 5′ and 3′ binding sites and thereby the binding-register of viral genomic RNA within nucleocapsids. This observation reveals that the 3′ end of the genome is largely exposed in fully assembled measles nucleocapsids. In particular, the final three nucleotides of the genome are rendered accessible to the RNA-dependent RNA polymerase complex, possibly enabling efficient RNA processing. The structures also reveal local and global conformational changes in the nucleoprotein upon assembly, in particular involving helix α6 and helix α13 that form edges of the RNA binding groove. Disorder is observed in the bound RNA, localized at one of the two backbone conformational switch sites. The high-resolution structure allowed us to identify putative nucleobase interaction sites in the RNA-binding groove, whose impact on assembly kinetics was measured using real-time NMR. Mutation of one of these sites, R195, whose sidechain stabilizes both backbone and base of a bound nucleic acid, is thereby shown to be essential for nucleocapsid-like particle assembly.


2009 ◽  
Vol 34 (3) ◽  
pp. 389-395 ◽  
Author(s):  
Robert T. Dirksen

The skeletal muscle contractile machine is fueled by both calcium and ATP. Calcium ions activate the contractile machinery by binding to troponin C and relieving troponin-tropomyosin inhibition of actinomyosin interaction. ATP binding to myosin during the contractile cycle results in myosin detachment from actin, and energy liberated from subsequent ATP hydrolysis is then used to drive the next contractile cycle. ATP is also used to lower myoplasmic calcium levels during muscle relaxation. Thus, muscle contractility is intimately linked to the proper control of sarcomeric Ca2+ delivery and (or) removal and ATP generation and (or) utilization. In skeletal muscle, the sarcoplasmic reticulum (SR) is the primary regulator of calcium storage, release, and reuptake, while glycolysis and the mitochondria are responsible for cellular ATP production. However, the SR and mitochondrial function in muscle are not independent, as calcium uptake into the mitochondria increases ATP production by stimulating oxidative phosphorylation and mitochondrial ATP production, and production and (or) detoxification of reactive oxygen and nitrogen species (ROS/RNS), in turn, modulates SR calcium release and reuptake. Close spatial Ca2+/ATP/ROS/RNS communication between the SR and mitochondria is facilitated by the structural attachment of mitochondria to the calcium release unit (CRU) by 10 nm of electron-dense tethers. The resultant anchoring of mitochondria to the CRU provides a structural basis for maintaining bidirectional SR–mitochondrial through-space communication during vigorous contraction. This review will consider the degree to which this structural link enables privileged or microdomain communication between the SR and mitochondria in skeletal muscle.


2004 ◽  
Vol 44 (supplement) ◽  
pp. S66
Author(s):  
K. Murakami ◽  
F. Yumoto ◽  
S. Ohki ◽  
T. Yasunaga ◽  
M. Tanokura ◽  
...  

2012 ◽  
Vol 86 (18) ◽  
pp. 9606-9616 ◽  
Author(s):  
Sundaresan Rajesh ◽  
Pooja Sridhar ◽  
Birke Andrea Tews ◽  
Lucie Fénéant ◽  
Laurence Cocquerel ◽  
...  

Hepatitis C virus (HCV) causes chronic liver disease, cirrhosis, and primary liver cancer. Despite 130 million people being at risk worldwide, no vaccine exists, and effective therapy is limited by drug resistance, toxicity, and high costs. The tetraspanin CD81 is an essential entry-level receptor required for HCV infection of hepatocytes and represents a critical target for intervention. In this study, we report the first structural characterization of the large extracellular loop of CD81, expressed in mammalian cells and studied in physiological solutions. The HCV E2 glycoprotein recognizes CD81 through a dynamic loop on the helical bundle, which was shown by nuclear magnetic resonance (NMR) spectroscopy to adopt a conformation distinct from that seen in crystals. A novel membrane binding interface was revealed adjacent to the exposed HCV interaction site in the extracellular loop of CD81. The binding pockets for two proposed inhibitors of the CD81-HCV interaction, namely, benzyl salicylate and fexofenadine, were shown to overlap the HCV and membrane interaction sites. Although the dynamic loop region targeted by these compounds presents challenges for structure-based design, the NMR assignments enable realistic screening and validation of ligands. Together, these data provide an improved avenue for developing potent agents that specifically block CD81-HCV interaction and also pave a way for elucidating the recognition mechanisms of diverse tetraspanins.


2021 ◽  
Author(s):  
Yihang Bao ◽  
Weixi Wang ◽  
Minglong Dong ◽  
Fei He ◽  
Han Wang

Transmembrane proteins (TMPs) serve as important drug targets and accounts for nearly half of the drugs currently available in the market. Research into TMPs interactions and their structural basis will provide key information for drug research and new drug development. Based on previous works like a binding pocket or binding site, our main purpose in this study is to find whether the structural universality (Interaction Domain) exists in all kinds of TMPs interaction regions through a computational approach. After implementing the experiments using our 3D deep learning model and achieve the Matthews correlation coefficient (MCC) of 0.36, we found strong evidence for the existence of the structural basis among TMPs interaction regions. That means those regions, or we call them interaction domains, are structural specific distinguishing to the domains without any interaction. According to this, this work provides a new theoretical basis for TMPs interaction research and can greatly boost the development of the drug industry.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Cameron Hill ◽  
Elisabetta Brunello ◽  
Luca Fusi ◽  
Jesús G Ovejero ◽  
Malcolm Irving

Time-resolved X-ray diffraction from isolated fast-twitch muscles of the mouse was used to show how structural changes in the myosin-containing thick filaments contribute to the regulation of muscle contraction, extending the previous focus on regulation by the actin-containing thin filaments. This study shows that muscle activation involves the following sequence of structural changes: thin filament activation, disruption of the helical array of myosin motors characteristic of resting muscle, release of myosin motor domains from the folded conformation on the filament backbone, and actin attachment. Physiological force generation in the 'twitch' response of skeletal muscle to single action potential stimulation is limited by incomplete activation of the thick filament and the rapid inactivation of both filaments. Muscle relaxation after repetitive stimulation is accompanied by complete recovery of the folded motor conformation on the filament backbone but incomplete reformation of the helical array, revealing a structural basis for post-tetanic potentiation in isolated muscle.


Sign in / Sign up

Export Citation Format

Share Document