scholarly journals Crystal Structure of Escherichia coli Polynucleotide Phosphorylase Core Bound to RNase E, RNA and Manganese: Implications for Catalytic Mechanism and RNA Degradosome Assembly

2009 ◽  
Vol 389 (1) ◽  
pp. 17-33 ◽  
Author(s):  
Salima Nurmohamed ◽  
Bhamini Vaidialingam ◽  
Anastasia J. Callaghan ◽  
Ben F. Luisi
2014 ◽  
Vol 34 (6) ◽  
Author(s):  
Feng Lu ◽  
Aziz Taghbalout

Multiprotein complexes that carry out RNA degradation and processing functions are found in cells from all domains of life. In Escherichia coli, the RNA degradosome, a four-protein complex, is required for normal RNA degradation and processing. In addition to the degradosome complex, the cell contains other ribonucleases that also play important roles in RNA processing and/or degradation. Whether the other ribonucleases are associated with the degradosome or function independently is not known. In the present work, IP (immunoprecipitation) studies from cell extracts showed that the major hydrolytic exoribonuclease RNase II is associated with the known degradosome components RNaseE (endoribonuclease E), RhlB (RNA helicase B), PNPase (polynucleotide phosphorylase) and Eno (enolase). Further evidence for the RNase II-degradosome association came from the binding of RNase II to purified RNaseE in far western affinity blot experiments. Formation of the RNase II–degradosome complex required the degradosomal proteins RhlB and PNPase as well as a C-terminal domain of RNaseE that contains binding sites for the other degradosomal proteins. This shows that the RNase II is a component of the RNA degradosome complex, a previously unrecognized association that is likely to play a role in coupling and coordinating the multiple elements of the RNA degradation pathways.


2004 ◽  
Vol 335 (2) ◽  
pp. 583-593 ◽  
Author(s):  
Andrea Spallarossa ◽  
Fabio Forlani ◽  
Aristodemo Carpen ◽  
Andrea Armirotti ◽  
Silvia Pagani ◽  
...  

Open Biology ◽  
2012 ◽  
Vol 2 (4) ◽  
pp. 120028 ◽  
Author(s):  
Steven W. Hardwick ◽  
Tobias Gubbey ◽  
Isabelle Hug ◽  
Urs Jenal ◽  
Ben F. Luisi

Polynucleotide phosphorylase (PNPase) is an exoribonuclease that cleaves single-stranded RNA substrates with 3′–5′ directionality and processive behaviour. Its ring-like, trimeric architecture creates a central channel where phosphorolytic active sites reside. One face of the ring is decorated with RNA-binding K-homology (KH) and S1 domains, but exactly how these domains help to direct the 3′ end of single-stranded RNA substrates towards the active sites is an unsolved puzzle. Insight into this process is provided by our crystal structures of RNA-bound and apo Caulobacter crescentus PNPase. In the RNA-free form, the S1 domains adopt a ‘splayed’ conformation that may facilitate capture of RNA substrates. In the RNA-bound structure, the three KH domains collectively close upon the RNA and direct the 3′ end towards a constricted aperture at the entrance of the central channel. The KH domains make non-equivalent interactions with the RNA, and there is a marked asymmetry within the catalytic core of the enzyme. On the basis of these data, we propose that structural non-equivalence, induced upon RNA binding, helps to channel substrate to the active sites through mechanical ratcheting. Structural and biochemical analyses also reveal the basis for PNPase association with RNase E in the multi-enzyme RNA degradosome assembly of the α-proteobacteria.


Author(s):  
George A. Mackie ◽  
Glen A. Coburn ◽  
Xin Miao ◽  
Douglas J. Briant ◽  
Annie Prud'homme‐Généreux ◽  
...  

2004 ◽  
Vol 340 (5) ◽  
pp. 965-979 ◽  
Author(s):  
Anastasia J Callaghan ◽  
Jukka P Aurikko ◽  
Leopold L Ilag ◽  
J Günter Grossmann ◽  
Vidya Chandran ◽  
...  

2002 ◽  
Vol 30 (2) ◽  
pp. 150-155 ◽  
Author(s):  
A. J. Carpousis

mRNA instability is an intrinsic property that permits timely changes in gene expression by limiting the lifetime of a transcript. The RNase E of Escherichia coli is a single-strand-specific endonuclease involved in the processing of rRNA and the degradation of mRNA. A nucleolytic multienzyme complex now known as the RNA degradosome was discovered during the purification and characterization of RNase E. Two other components are a 3′ exoribonuclease (polynucleotide phosphorylase, PNPase) and a DEAD-box RNA helicase (RNA helicase B, RhlB). RNase E is a large multidomain protein with N-terminal ribonucleolytic activity, an RNA-binding domain and a C-terminal ‘scaffold’ that binds PNPase, enolase and RhlB. RhlB by itself has little activity but is strongly stimulated by its interaction with RNase E. RhlB in vitro can facilitate the degradation of structured RNA by PNPase. Since the discovery of the RNA degradosome in E. coli, related complexes have been described in other organisms.


2001 ◽  
Vol 183 (3) ◽  
pp. 1106-1109 ◽  
Author(s):  
Catherine Spickler ◽  
Victoria Stronge ◽  
George A. Mackie

ABSTRACT RNase E, the principal RNase capable of initiating mRNA decay, preferentially attacks 5′-monophosphorylated over 5′-triphosphorylated substrates. Site-specific cleavage in vitro of therpsT mRNA by RNase H directed by chimeric 2′-O-methyl oligonucleotides was employed to create truncated RNAs which are identical to authentic degradative intermediates. The rates of cleavage of two such intermediates by RNase E in the RNA degradosome are significantly faster (2.5- to 8-fold) than that of intact RNA. This verifies the preference of RNase E for degradative intermediates and can explain the frequent “all-or-none” behavior of mRNAs during the decay process.


2009 ◽  
Vol 191 (6) ◽  
pp. 1738-1748 ◽  
Author(s):  
Thomas Carzaniga ◽  
Federica Briani ◽  
Sandro Zangrossi ◽  
Giuseppe Merlino ◽  
Paolo Marchi ◽  
...  

ABSTRACT The Escherichia coli polynucleotide phosphorylase (PNPase; encoded by pnp), a phosphorolytic exoribonuclease, posttranscriptionally regulates its own expression at the level of mRNA stability and translation. Its primary transcript is very efficiently processed by RNase III, an endonuclease that makes a staggered double-strand cleavage about in the middle of a long stem-loop in the 5′-untranslated region. The processed pnp mRNA is then rapidly degraded in a PNPase-dependent manner. Two non-mutually exclusive models have been proposed to explain PNPase autogenous regulation. The earlier one suggested that PNPase impedes translation of the RNase III-processed pnp mRNA, thus exposing the transcript to degradative pathways. More recently, this has been replaced by the current model, which maintains that PNPase would simply degrade the promoter proximal small RNA generated by the RNase III endonucleolytic cleavage, thus destroying the double-stranded structure at the 5′ end that otherwise stabilizes the pnp mRNA. In our opinion, however, the first model was not completely ruled out. Moreover, the RNA decay pathway acting upon the pnp mRNA after disruption of the 5′ double-stranded structure remained to be determined. Here we provide additional support to the current model and show that the RNase III-processed pnp mRNA devoid of the double-stranded structure at its 5′ end is not translatable and is degraded by RNase E in a PNPase-independent manner. Thus, the role of PNPase in autoregulation is simply to remove, in concert with RNase III, the 5′ fragment of the cleaved structure that both allows translation and prevents the RNase E-mediated PNPase-independent degradation of the pnp transcript.


2021 ◽  
Author(s):  
Josh McQuail ◽  
Agamemnon J. Carpousis ◽  
Sivaramesh Wigneshweraraj

AbstractThe regulation of bacterial gene expression is underpinned by the synthesis and degradation of mRNA. In Escherichia coli, RNase E is the central enzyme involved in RNA degradation and serves as a scaffold for the assembly of the multiprotein complex known as the RNA degradosome. The activity of RNase E against specific mRNAs can also be regulated by the action of small RNAs (sRNA). The ubiquitous bacterial chaperone Hfq bound to sRNAs interacts with the RNA degradosome for the sRNA guided degradation of target mRNAs. The association between RNase E and Hfq has never been observed in live bacteria. We now show that in long-term nitrogen starved E. coli, both RNase E and Hfq co-localise in a single, large focus. This subcellular assembly, which we refer to as the H-body, also includes components of the RNA degradosome, namely, the helicase RhlB and the exoribonuclease polynucleotide phosphorylase. We further show that H-bodies are important for E. coli to optimally survive sustained nitrogen starvation. Collectively, the properties and features of the H-body suggests that it represents a hitherto unreported example of subcellular compartmentalisation of a process(s) associated with RNA management in stressed bacteria.


Sign in / Sign up

Export Citation Format

Share Document