preferential cleavage
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 8)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Wei Liu ◽  
Yusen Yang ◽  
Haisong Feng ◽  
Yiming Niu ◽  
Lei Wang ◽  
...  

Abstract The design and exploitation of high-performance catalysts as well as understanding the structure-property correlation have gained considerable attention in selective hydrogenation reactions, but remain a huge challenge. Herein, we report a RuNi single atom alloy (SAA) in which Ru single atoms are anchored onto Ni nanoparticle surface via Ru–Ni coordination accompanied with electron transfer from sub-surface Ni to Ru. The optimal catalyst 0.4% RuNi SAA exhibits simultaneously improved activity (TOF value: 4293 h− 1) and chemoselectivity toward selective hydrogenation of 4-nitrostyrene to 4-aminostyrene (yield: >99%), which is, to the best of our knowledge, the highest level compared with reported heterogeneous catalysts. In situ experimental researches based on XAFS, FT-IR measurements and theoretical calculations reveal that the Ru–Ni interfacial sites as intrinsic active centers facilitate the preferential cleavage of N–O bond in nitro group with a decreased energy barrier by 0.35 eV. In addition, the Ru–Ni synergistic catalysis promotes the formation of intermediates (C8H7NO* and C8H7NOH*) and accelerates the rate-determining step (hydrogenation of C8H7NOH*), resulting in the extraordinary activity and chemoselectivity toward nitroarenes hydrogenation.


2021 ◽  
Vol 118 (26) ◽  
pp. e2025930118
Author(s):  
Iñaki Etxeberria ◽  
Elixabet Bolaños ◽  
Alvaro Teijeira ◽  
Saray Garasa ◽  
Alba Yanguas ◽  
...  

Costimulation via CD137 (4-1BB) enhances antitumor immunity mediated by cytotoxic T lymphocytes. Anti-CD137 agonist antibodies elicit mild liver inflammation in mice, and the maximum tolerated dose of Urelumab, an anti-human CD137 agonist monoclonal antibody, in the clinic was defined by liver inflammation–related side effects. A protease-activated prodrug form of the anti-mouse CD137 agonist antibody 1D8 (1D8 Probody therapeutic, Pb-Tx) was constructed and found to be selectively activated in the tumor microenvironment. This construct, which encompasses a protease-cleavable linker holding in place a peptide that masks the antigen binding site, exerted antitumor effects comparable to the unmodified antibody but did not result in liver inflammation. Moreover, it efficaciously synergized with both PD-1 blockade and adoptive T-cell therapy. Surprisingly, minimal active Pb-Tx reached tumor-draining lymph nodes, and regional lymphadenectomy did not abrogate antitumor efficacy. By contrast, S1P receptor–dependent recirculation of T cells was absolutely required for efficacy. The preferential cleavage of the anti-CD137 Pb-Tx by tumor proteases offers multiple therapeutic opportunities, including neoadjuvant therapy, as shown by experiments in which the Pb-Tx is given prior to surgery to avoid spontaneous metastases.


2021 ◽  
Author(s):  
Margrethe Gaardløs ◽  
Tonje Marita Bjerkan Heggeset ◽  
Anne Tøndervik ◽  
David Tezé ◽  
Birte Svensson ◽  
...  

Mannuronan C-5 epimerases and alginate lyases are important enzymes for tailoring of the functional properties of alginate. The reaction mechanisms for the epimerization and lyase reactions are similar, and some enzymes, like AlgE7 from Azotobacter vinelandii, can perform both reactions. These enzymes share high sequence identity with mannuronan C-5 epimerases without lyase activity, and the mechanism behind their dual activity is not understood. In this study, we investigate mechanistic determinants involved in the bifunctional alginate lyase and epimerase activity of AlgE7. Based on sequence analyses a range of AlgE7 variants were constructed and subjected to activity assays and product characterization by NMR. Calcium promotes lyase activity whereas NaCl reduces the lyase activity of AlgE7. By using well-defined alginate substrates, the preferential cleavage sites of AlgE7 are found to be M|XM and G|XM. From the study of variants, it was found that R148 is particularly important for the lyase activity of AlgE7, and we obtained pure epimerase variants. Furthermore, the results suggest a catalytic reaction mechanism, with H154 as the catalytic base and Y149 as the catalytic acid. This study opens for further applications of alginate epimerases and lyases, by providing a better understanding of the reaction mechanism and how the two enzyme reactions can be altered by changes in reaction conditions.


2020 ◽  
Author(s):  
Michal Biler ◽  
Rory Crean ◽  
Anna K. Schweiger ◽  
Robert Kourist ◽  
Shina Caroline Lynn Kamerlin

<div> <div> <p> </p><div> <div> <div> <p>Bacterial arylmalonate decarboxylase (AMDase) and evolved variants have become a valuable tool with which to access both enantiomers of a broad range of chiral arylaliphatic acids with high optical purity. Yet, the molecular principles responsible for the substrate scope, activity and selectivity of this enzyme are only poorly understood to this day, greatly hampering the predictability and design of improved enzyme variants for specific applications. In this work, empirical valence bond and metadynamics simulations were performed on wild-type AMDase and variants thereof, to obtain a better understanding of the underlying molecular processes determining reaction outcome. Our results clearly reproduce the experimentally observed substrate scope, and support a mechanism driven by ground-state destabilization of the carboxylate group being cleaved by the enzyme. In addition, our results indicate that, in the case of the non-converted or poorly-converted substrates studied in this work, increased solvent exposure of the active site upon binding of these substrates can disturb the vulnerable network of interactions responsible for facilitating the AMDase-catalyzed cleavage of CO2. Finally, our results indicate a switch from preferential cleavage of the pro-(R) to the pro-(S) carboxylate group in the CLG-IPL variant of AMDase for all substrates studied. This appears to be due to the emergence of a new hydrophobic pocket generated by the insertion of the six amino acid substitutions, into which the pro-(S) carboxylate binds. Our results allow insight into the tight interaction network determining AMDase selectivity, which in turn provides guidance for the identification of target residues for future enzyme engineering. </p> </div> </div> </div> </div> </div>


2020 ◽  
Author(s):  
Michal Biler ◽  
Rory Crean ◽  
Anna K. Schweiger ◽  
Robert Kourist ◽  
Shina Caroline Lynn Kamerlin

<div> <div> <p> </p><div> <div> <div> <p>Bacterial arylmalonate decarboxylase (AMDase) and evolved variants have become a valuable tool with which to access both enantiomers of a broad range of chiral arylaliphatic acids with high optical purity. Yet, the molecular principles responsible for the substrate scope, activity and selectivity of this enzyme are only poorly understood to this day, greatly hampering the predictability and design of improved enzyme variants for specific applications. In this work, empirical valence bond and metadynamics simulations were performed on wild-type AMDase and variants thereof, to obtain a better understanding of the underlying molecular processes determining reaction outcome. Our results clearly reproduce the experimentally observed substrate scope, and support a mechanism driven by ground-state destabilization of the carboxylate group being cleaved by the enzyme. In addition, our results indicate that, in the case of the non-converted or poorly-converted substrates studied in this work, increased solvent exposure of the active site upon binding of these substrates can disturb the vulnerable network of interactions responsible for facilitating the AMDase-catalyzed cleavage of CO2. Finally, our results indicate a switch from preferential cleavage of the pro-(R) to the pro-(S) carboxylate group in the CLG-IPL variant of AMDase for all substrates studied. This appears to be due to the emergence of a new hydrophobic pocket generated by the insertion of the six amino acid substitutions, into which the pro-(S) carboxylate binds. Our results allow insight into the tight interaction network determining AMDase selectivity, which in turn provides guidance for the identification of target residues for future enzyme engineering. </p> </div> </div> </div> </div> </div>


2020 ◽  
Author(s):  
Michal Biler ◽  
Rory Crean ◽  
Anna K. Schweiger ◽  
Robert Kourist ◽  
Shina Caroline Lynn Kamerlin

<div> <div> <p> </p><div> <div> <div> <p>Bacterial arylmalonate decarboxylase (AMDase) and evolved variants have become a valuable tool with which to access both enantiomers of a broad range of chiral arylaliphatic acids with high optical purity. Yet, the molecular principles responsible for the substrate scope, activity and selectivity of this enzyme are only poorly understood to this day, greatly hampering the predictability and design of improved enzyme variants for specific applications. In this work, empirical valence bond and metadynamics simulations were performed on wild-type AMDase and variants thereof, to obtain a better understanding of the underlying molecular processes determining reaction outcome. Our results clearly reproduce the experimentally observed substrate scope, and support a mechanism driven by ground-state destabilization of the carboxylate group being cleaved by the enzyme. In addition, our results indicate that, in the case of the non-converted or poorly-converted substrates studied in this work, increased solvent exposure of the active site upon binding of these substrates can disturb the vulnerable network of interactions responsible for facilitating the AMDase-catalyzed cleavage of CO2. Finally, our results indicate a switch from preferential cleavage of the pro-(R) to the pro-(S) carboxylate group in the CLG-IPL variant of AMDase for all substrates studied. This appears to be due to the emergence of a new hydrophobic pocket generated by the insertion of the six amino acid substitutions, into which the pro-(S) carboxylate binds. Our results allow insight into the tight interaction network determining AMDase selectivity, which in turn provides guidance for the identification of target residues for future enzyme engineering. </p> </div> </div> </div> </div> </div>


2019 ◽  
Vol 123 (30) ◽  
pp. 6389-6400 ◽  
Author(s):  
Zainab K. Sanusi ◽  
Monsurat M. Lawal ◽  
Thavendran Govender ◽  
Glenn E. M. Maguire ◽  
Bahareh Honarparvar ◽  
...  

2019 ◽  
Vol 48 (42) ◽  
pp. 15896-15905
Author(s):  
J. Jacobo Salazar-Díaz ◽  
Miguel A. Muñoz-Hernández ◽  
Ernesto Rufino-Felipe ◽  
Marcos Flores-Alamo ◽  
Alejandro Ramírez-Solís ◽  
...  

Preferential cleavage of Sn–C sp3versus Sn–C sp2 bonds and establishment of trans influence trend SnMe3 > SnPh2(CH2R) > SnPh3 in platinum stannylphosphines.


2018 ◽  
Vol 427 ◽  
pp. 114-122 ◽  
Author(s):  
David J. Foreman ◽  
Stella K. Betancourt ◽  
Alice L. Pilo ◽  
Scott A. McLuckey

Sign in / Sign up

Export Citation Format

Share Document