rnase ii
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 5)

H-INDEX

19
(FIVE YEARS 1)

Author(s):  
Elizabeth R Ballou ◽  
Atlanta G Cook ◽  
Edward W J Wallace

Abstract The RNase II family of 3′-5′ exoribonucleases are present in all domains of life, and eukaryotic family members Dis3 and Dis3L2 play essential roles in RNA degradation. Ascomycete yeasts contain both Dis3 and inactive RNase II-like “pseudonucleases”. The latter function as RNA-binding proteins that affect cell growth, cytokinesis, and fungal pathogenicity. However, the evolutionary origins of these pseudonucleases are unknown: what sequence of events led to their novel function, and when did these events occur? Here, we show how RNase II pseudonuclease homologs, including Saccharomyces cerevisiae Ssd1, are descended from active Dis3L2 enzymes. During fungal evolution, active site mutations in Dis3L2 homologs have arisen at least four times, in some cases following gene duplication. In contrast, N-terminal cold-shock domains and regulatory features are conserved across diverse dikarya and mucoromycota, suggesting that the non-nuclease function requires these regions. In the basidiomycete pathogenic yeast Cryptococcus neoformans, the single Ssd1/Dis3L2 homolog is required for cytokinesis from polyploid “titan” growth stages. This phenotype of C. neoformans Ssd1/Dis3L2 deletion is consistent with those of inactive fungal pseudonucleases, yet the protein retains an active site sequence signature. We propose that a nuclease-independent function for Dis3L2 arose in an ancestral hyphae-forming fungus. This second function has been conserved across hundreds of millions of years, while the RNase activity was lost repeatedly in independent lineages.


2020 ◽  
Author(s):  
Rosemary A. Bayne ◽  
Uma Jayachandran ◽  
Aleksandra Kasprowicz ◽  
Stefan Bresson ◽  
David Tollervey ◽  
...  

AbstractThe conserved fungal RNA binding protein Ssd1, is important in stress responses, cell division and virulence. Ssd1 is closely related to Dis3L2 of the RNase II family of nucleases, but lacks catalytic activity and may act by suppressing translation of associated mRNAs. Previous studies identified motifs that are enriched in Ssd1-associated transcripts, yet the sequence requirements for Ssd1 binding are not well understood. Here we present the crystal structure of Ssd1 at 1.9 Å resolution. Active RNase II enzymes have a characteristic, internal RNA binding path, but in Ssd1 this is blocked by remnants of regulatory sequences. Instead, RNA binding activity has likely been relocated to the outer surface of the protein. Using in vivo crosslinking and cDNA analysis (CRAC), we identify Ssd1-RNA binding sites. These are strongly enriched in 5’UTRs of a subset of mRNAs encoding cell wall proteins. Based on these and previous analyses, we identified a conserved bipartite motif that binds Ssd1 with high affinity in vitro. These studies provide a new framework for understanding the function of a pleiotropic post-transcriptional regulator of gene expression and give insights into the evolution of regulatory elements in the RNase II family.


Author(s):  
Elizabeth R Ballou ◽  
Atlanta G Cook ◽  
Edward W. J. Wallace

The RNase II family of 3'-5' exoribonucleases are present in all domains of life, and eukaryotic family members Dis3 and Dis3L2 play essential roles in RNA degradation. Ascomycete yeasts contain both Dis3 and inactive RNase II-like "pseudonucleases". These function as RNA-binding proteins that affect cell growth, cytokinesis, and fungal pathogenicity. Here, we show how these pseudonuclease homologs, including Saccharomyces cerevisiae Ssd1, are descended from active Dis3L2 enzymes. During fungal evolution, active site mutations in Dis3L2 homologs have arisen at least four times, in some cases following gene duplication. The N-terminal cold-shock domains and regulatory features are conserved across diverse dikarya and mucoromycota, suggesting that the non-nuclease function require this region. In the basidiomycete pathogenic yeast Cryptococcus neoformans, the single Ssd1/Dis3L2 homolog is required for cytokinesis from polyploid "titan" growth stages and yet retains an active site sequence signature. We propose that that a nuclease-independent function for Dis3L2 arose in an ancestral hyphae-forming fungus. This second function has been conserved across hundreds of millions of years, while the RNase activity was lost repeatedly in independent lineages.


2020 ◽  
Vol 48 (7) ◽  
pp. 3922-3934 ◽  
Author(s):  
Cong Zhou ◽  
Juyuan Zhang ◽  
Xinyu Hu ◽  
Changchang Li ◽  
Li Wang ◽  
...  

Abstract In Escherichia coli, the endoribonuclease E (RNase E) can recruit several other ribonucleases and regulatory proteins via its noncatalytic domain to form an RNA degradosome that controls cellular RNA turnover. Similar RNA degradation complexes have been found in other bacteria; however, their compositions are varied among different bacterial species. In cyanobacteria, only the exoribonuclease PNPase was shown to bind to the noncatalytic domain of RNase E. Here, we showed that Alr1240, a member of the RNB family of exoribonucleases, could be co-isolated with RNase E from the lysate of the cyanobacterium Anabaena PCC 7120. Enzymatic analysis revealed that Alr1240 is an exoribonuclease II (RNase II), as it only degrades non-structured single-stranded RNA substrates. In contrast to known RNase E-interacting ribonucleases, which bind to the noncatalytic domain of RNase E, the Anabaena RNase II was shown to associate with the catalytic domain of RNase E. Using a strain in which RNase E and RNase II were tagged in situ with GFP and BFP, respectively, we showed that RNase E and RNase II form a compact complex in vivo by a fluorescence resonance energy transfer (FRET) assay. RNase E activity on several synthetic substrates was boosted in the presence of RNase II, suggesting that the activity of RNase E could be regulated by RNase II-RNase E interaction. To our knowledge, Anabaena RNase II is an unusual ribonuclease that interacts with the catalytic domain of RNase E, and it may represent a new type of RNA degradosome and a novel mechanism for regulating the activity of the RNA degradosome. As Anabaena RNase E interacts with RNase II and PNPase via different regions, it is very likely that the three ribonucleases form a large complex and cooperatively regulate RNA metabolism in the cell.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Vânia Pobre ◽  
Susana Barahona ◽  
Tatiane Dobrzanski ◽  
Maria Berenice Reynaud Steffens ◽  
Cecília M. Arraiano

Abstract The transition between exponential and stationary phase is a natural phenomenon for all bacteria and requires a massive readjustment of the bacterial transcriptome. Exoribonucleases are key enzymes in the transition between the two growth phases. PNPase, RNase R and RNase II are the major degradative exoribonucleases in Escherichia coli. We analysed the whole transcriptome of exponential and stationary phases from the WT and mutants lacking these exoribonucleases (Δpnp, Δrnr, Δrnb, and ΔrnbΔrnr). When comparing the cells from exponential phase with the cells from stationary phase more than 1000 transcripts were differentially expressed, but only 491 core transcripts were common to all strains. There were some differences in the number and transcripts affected depending on the strain, suggesting that exoribonucleases influence the transition between these two growth phases differently. Interestingly, we found that the double mutant RNase II/RNase R is similar to the RNase R single mutant in exponential phase while in stationary phase it seems to be closer to the RNase II single mutant. This is the first global transcriptomic work comparing the roles of exoribonucleases in the transition between exponential and stationary phase.


RNA ◽  
2017 ◽  
Vol 23 (9) ◽  
pp. 1456-1464 ◽  
Author(s):  
Shaheen Sulthana ◽  
Ernesto Quesada ◽  
Murray P. Deutscher

2016 ◽  
Vol 44 (5) ◽  
pp. 1979-1988 ◽  
Author(s):  
Limin Song ◽  
Guangyuan Wang ◽  
Arun Malhotra ◽  
Murray P. Deutscher ◽  
Wenxing Liang
Keyword(s):  

2015 ◽  
Vol 197 (13) ◽  
pp. 2201-2216 ◽  
Author(s):  
Sheldon Hurst ◽  
Holli Rowedder ◽  
Brandye Michaels ◽  
Hannah Bullock ◽  
Ryan Jackobeck ◽  
...  

ABSTRACTThe entomopathogenic nematodeHeterorhabditis bacteriophoraforms a specific mutualistic association with its bacterial partnerPhotorhabdus temperata. The microbial symbiont is required for nematode growth and development, and symbiont recognition is strain specific. The aim of this study was to sequence the genome ofP. temperataand identify genes that plays a role in the pathogenesis of thePhotorhabdus-Heterorhabditissymbiosis. A draft genome sequence ofP. temperatastrain NC19 was generated. The 5.2-Mb genome was organized into 17 scaffolds and contained 4,808 coding sequences (CDS). A genetic approach was also pursued to identify mutants with altered motility. A bank of 10,000P. temperatatransposon mutants was generated and screened for altered motility patterns. Five classes of motility mutants were identified: (i) nonmotile mutants, (ii) mutants with defective or aberrant swimming motility, (iii) mutant swimmers that do not require NaCl or KCl, (iv) hyperswimmer mutants that swim at an accelerated rate, and (v) hyperswarmer mutants that are able to swarm on the surface of 1.25% agar. The transposon insertion sites for these mutants were identified and used to investigate other physiological properties, including insect pathogenesis. The motility-defective mutant P13-7 had an insertion in the RNase II gene and showed reduced virulence and production of extracellular factors. Genetic complementation of this mutant restored wild-type activity. These results demonstrate a role for RNA turnover in insect pathogenesis and other physiological functions.IMPORTANCEThe relationship betweenPhotorhabdusand entomopathogenic nematodeHeterorhabditisrepresents a well-known mutualistic system that has potential as a biological control agent. The elucidation of the genome of the bacterial partner and role that RNase II plays in its life cycle has provided a greater understanding ofPhotorhabdusas both an insect pathogen and a nematode symbiont.


RNA Biology ◽  
2015 ◽  
Vol 12 (6) ◽  
pp. 586-589 ◽  
Author(s):  
Qingfeng Zhang ◽  
Artur Scherf
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document