Long-Range Interactions in Nonsense-Mediated mRNA Decay Are Mediated by Intrinsically Disordered Protein Regions

2012 ◽  
Vol 424 (3-4) ◽  
pp. 125-131 ◽  
Author(s):  
Lajos Kalmar ◽  
Veronika Acs ◽  
Daniel Silhavy ◽  
Peter Tompa
2019 ◽  
Author(s):  
Amberley D. Stephens ◽  
Maria Zacharopoulou ◽  
Rani Moons ◽  
Giuliana Fusco ◽  
Neeleema Seetaloo ◽  
...  

AbstractAs an intrinsically disordered protein, monomeric alpha synuclein (aSyn) constantly reconfigures and probes the conformational space. Long-range interactions across the protein maintain its solubility and mediate this dynamic flexibility, but also provide residual structure. Certain conformations lead to aggregation prone and non-aggregation prone intermediates, but identifying these within the dynamic ensemble of monomeric conformations is difficult. Herein, we used the biologically relevant calcium ion to investigate the conformation of monomeric aSyn in relation to its aggregation propensity. By using calcium to perturb the conformational ensemble, we observe differences in structure and intra-molecular dynamics between two aSyn C-terminal variants, D121A and pS129, and the aSyn familial disease mutants, A30P, E46K, H50Q, G51D, A53T and A53E, compared to wild-type (WT) aSyn. We observe that the more exposed the N-terminus and the beginning of the NAC region are, the more aggregation prone monomeric aSyn conformations become. N-terminus exposure occurs upon release of C-terminus interactions when calcium binds, but the level of exposure is specific to the aSyn mutation present. There was no correlation between single charge alterations, calcium affinity, or the number of ions bound on aSyn’s aggregation propensity, indicating that sequence or post-translation modification (PTM)-specific conformational differences between the N- and C-termini and the specific local environment mediate aggregation propensity instead. Understanding aggregation prone conformations of monomeric aSyn and the environmental conditions they form under will allow us to design new therapeutics targeted to the monomeric protein, to stabilise aSyn in non-aggregation prone conformations, by either preserving long-range interactions between the N- and C-termini or by protecting the N-terminus from exposure.


2013 ◽  
Vol 135 (27) ◽  
pp. 10155-10163 ◽  
Author(s):  
Vytautas Iešmantavičius ◽  
Malene Ringkjøbing Jensen ◽  
Valéry Ozenne ◽  
Martin Blackledge ◽  
Flemming M. Poulsen ◽  
...  

2018 ◽  
Author(s):  
Sarah Klass ◽  
Matthew J. Smith ◽  
Tahoe Fiala ◽  
Jessica Lee ◽  
Anthony Omole ◽  
...  

Herein, we describe a new series of fusion proteins that have been developed to self-assemble spontaneously into stable micelles that are 27 nm in diameter after enzymatic cleavage of a solubilizing protein tag. The sequences of the proteins are based on a human intrinsically disordered protein, which has been appended with a hydrophobic segment. The micelles were found to form across a broad range of pH, ionic strength, and temperature conditions, with critical micelle concentration (CMC) values below 1 µM being observed in some cases. The reported micelles were found to solubilize hydrophobic metal complexes and organic molecules, suggesting their potential suitability for catalysis and drug delivery applications.


Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 381
Author(s):  
Bálint Mészáros ◽  
Borbála Hajdu-Soltész ◽  
András Zeke ◽  
Zsuzsanna Dosztányi

Many proteins contain intrinsically disordered regions (IDRs) which carry out important functions without relying on a single well-defined conformation. IDRs are increasingly recognized as critical elements of regulatory networks and have been also associated with cancer. However, it is unknown whether mutations targeting IDRs represent a distinct class of driver events associated with specific molecular and system-level properties, cancer types and treatment options. Here, we used an integrative computational approach to explore the direct role of intrinsically disordered protein regions driving cancer. We showed that around 20% of cancer drivers are primarily targeted through a disordered region. These IDRs can function in multiple ways which are distinct from the functional mechanisms of ordered drivers. Disordered drivers play a central role in context-dependent interaction networks and are enriched in specific biological processes such as transcription, gene expression regulation and protein degradation. Furthermore, their modulation represents an alternative mechanism for the emergence of all known cancer hallmarks. Importantly, in certain cancer patients, mutations of disordered drivers represent key driving events. However, treatment options for such patients are currently severely limited. The presented study highlights a largely overlooked class of cancer drivers associated with specific cancer types that need novel therapeutic options.


Sign in / Sign up

Export Citation Format

Share Document