scholarly journals Skull fracture prediction through subject-specific finite element modelling is highly sensitive to model parameters

Author(s):  
Dries De Kegel ◽  
Alexander Meynen ◽  
Nele Famaey ◽  
G. Harry van Lenthe ◽  
Bart Depreitere ◽  
...  
2013 ◽  
Vol 16 (sup1) ◽  
pp. 270-271
Author(s):  
C. Laurent ◽  
B. Bohme ◽  
V. d'Otreppe ◽  
M. Balligand ◽  
J.-P. Ponthot

Author(s):  
Jacob Dybwad ◽  
Rikard To¨rnqvist ◽  
Erling O̸stby ◽  
Christian Thaulow

The purpose of the present paper is to present results from analyses of ductile tearing of biaxially loaded pipes subjected to large scale yielding. The paper deals with three dimensional finite element modelling of pipes with a circumferentially orientated surface crack, where the analyses aim to reproduce the crack propagation behaviour of six full scale bend tests of x-65 seamless pipes with different levels of internal overpressure. The tests were performed as a part of the joint industry project Fracture Control - Offshore Pipelines. Ductile tearing is taken into account by using the Gurson-Tvergaard-Needleman formulation, where calibration of the material model parameters is done by reproducing the fracture toughness test of a SENT-specimen of the same material with finite element modelling. The following simulations of the pipes show a good correspondence with the full scale test results, where both the global response and the ductile tearing from the crack are captured. One important result of the study is that the Gurson-Tvergaard-Needleman parameters that were calibrated against the SENT-specimen could successfully be used for the ductile tearing simulation of the full scale pipes.


2019 ◽  
Vol 48 (4) ◽  
pp. 1181-1195 ◽  
Author(s):  
Yuyang Wei ◽  
Zhenmin Zou ◽  
Guowu Wei ◽  
Lei Ren ◽  
Zhihui Qian

AbstractThis paper aims to develop and validate a subject-specific framework for modelling the human hand. This was achieved by combining medical image-based finite element modelling, individualized muscle force and kinematic measurements. Firstly, a subject-specific human hand finite element (FE) model was developed. The geometries of the phalanges, carpal bones, wrist bones, ligaments, tendons, subcutaneous tissue and skin were all included. The material properties were derived from in-vivo and in-vitro experiment results available in the literature. The boundary and loading conditions were defined based on the kinematic data and muscle forces of a specific subject captured from the in-vivo grasping tests. The predicted contact pressure and contact area were in good agreement with the in-vivo test results of the same subject, with the relative errors for the contact pressures all being below 20%. Finally, sensitivity analysis was performed to investigate the effects of important modelling parameters on the predictions. The results showed that contact pressure and area were sensitive to the material properties and muscle forces. This FE human hand model can be used to make a detailed and quantitative evaluation into biomechanical and neurophysiological aspects of human hand contact during daily perception and manipulation. The findings can be applied to the design of the bionic hands or neuro-prosthetics in the future.


Sign in / Sign up

Export Citation Format

Share Document