scholarly journals Subject-specific finite element modelling of the human foot complex during walking: sensitivity analysis of material properties, boundary and loading conditions

2017 ◽  
Vol 17 (2) ◽  
pp. 559-576 ◽  
Author(s):  
Mohammad Akrami ◽  
Zhihui Qian ◽  
Zhemin Zou ◽  
David Howard ◽  
Chris J Nester ◽  
...  
2019 ◽  
Vol 48 (4) ◽  
pp. 1181-1195 ◽  
Author(s):  
Yuyang Wei ◽  
Zhenmin Zou ◽  
Guowu Wei ◽  
Lei Ren ◽  
Zhihui Qian

AbstractThis paper aims to develop and validate a subject-specific framework for modelling the human hand. This was achieved by combining medical image-based finite element modelling, individualized muscle force and kinematic measurements. Firstly, a subject-specific human hand finite element (FE) model was developed. The geometries of the phalanges, carpal bones, wrist bones, ligaments, tendons, subcutaneous tissue and skin were all included. The material properties were derived from in-vivo and in-vitro experiment results available in the literature. The boundary and loading conditions were defined based on the kinematic data and muscle forces of a specific subject captured from the in-vivo grasping tests. The predicted contact pressure and contact area were in good agreement with the in-vivo test results of the same subject, with the relative errors for the contact pressures all being below 20%. Finally, sensitivity analysis was performed to investigate the effects of important modelling parameters on the predictions. The results showed that contact pressure and area were sensitive to the material properties and muscle forces. This FE human hand model can be used to make a detailed and quantitative evaluation into biomechanical and neurophysiological aspects of human hand contact during daily perception and manipulation. The findings can be applied to the design of the bionic hands or neuro-prosthetics in the future.


2012 ◽  
Vol 154 (A2) ◽  

This study aims at studying different configurations of the stiffened panels in order to identify robust configurations that would not be much sensitive to the imprecision in boundary conditions that can exist in experimental set ups. A numerical study is conducted to analyze the influence of the stiffener’s geometry and boundary conditions on the ultimate strength of stiffened panels under uniaxial compression. The stiffened panels with different combinations of mechanical material properties and geometric configurations are considered. The four types of stiffened panels analysed are made of mild or high tensile steel and have bar, ‘L’ and ‘U’ stiffeners. To understand the effect of finite element modelling on the ultimate strength of the stiffened panels, four types of FE models are investigated in FE analysis including 3 bays, 1/2+1+1/2 bays, 1+1 bays and 1 bay with different boundary conditions.


2013 ◽  
Vol 16 (sup1) ◽  
pp. 270-271
Author(s):  
C. Laurent ◽  
B. Bohme ◽  
V. d'Otreppe ◽  
M. Balligand ◽  
J.-P. Ponthot

Sign in / Sign up

Export Citation Format

Share Document