scholarly journals Preparation and characterization of chondroitin‐sulfate‐A‐coated magnetite nanoparticles for biomedical applications

2015 ◽  
Vol 380 ◽  
pp. 168-174 ◽  
Author(s):  
Ildikó Y. Tóth ◽  
Erzsébet Illés ◽  
Márta Szekeres ◽  
Etelka Tombácz
2014 ◽  
Vol 126 ◽  
pp. 207-210 ◽  
Author(s):  
Nopporn Sawatjui ◽  
Teerasak Damrongrungruang ◽  
Wilairat Leeanansaksiri ◽  
Patcharee Jearanaikoon ◽  
Temduang Limpaiboon

Author(s):  
S. N. Vakhneev ◽  
Minggong Sha

In this study, two types of ligands were introduced onto the surface of magnetite nanoparticles by hydrolysis and condensation of organosilicon reagents: organosilane-tetraethoxysilane (TEOS) and aminoorganosilane - aminopropyltriethoxysilane (APTES). It is shown that coatings based on SiO2 solve a double problem: first, they prevent the aggregation of nanoparticles and the oxidation of magnetite; secondly, they allow the surface to be modified with various specific ligands for biomedical applications due to terminal groups. It was shown, that after the modification of TEOS and APTES (in argon and in air), the Fe3O4 content decreases to 66, 42, and 36%, respectively. The formation of a silicon framework on the magnetite surface due to Fe-O-Si and Si-O-Si bonds was determined by IR spectroscopy. The identification of surface amino groups is complicated due to the superposition of absorption bands of NH2- and OH-groups. This opens new prospective for creation of tailored nanocomposites containing magnetite nanoparticles. These materials can be further used as sorbents for various applications.


2019 ◽  
Vol 20 (17) ◽  
pp. 4096 ◽  
Author(s):  
Ildikó Y. Tóth ◽  
Erzsébet Illés ◽  
Márta Szekeres ◽  
István Zupkó ◽  
Rodica Turcu ◽  
...  

Biopolymer coated magnetite nanoparticles (MNPs) are suitable to fabricate biocompatible magnetic fluid (MF). Their comprehensive characterization, however, is a necessary step to assess whether bioapplications are feasible before expensive in vitro and in vivo tests. The MNPs were prepared by co-precipitation, and after careful purification, they were coated by chondroitin-sulfate-A (CSA). CSA exhibits high affinity adsorption to MNPs (H-type isotherm). We could only make stable MF of CSA coated MNPs (CSA@MNPs) under accurate conditions. The CSA@MNP was characterized by TEM (size ~10 nm) and VSM (saturation magnetization ~57 emu/g). Inner-sphere metal–carboxylate complex formation between CSA and MNP was proved by FTIR-ATR and XPS. Electrophoresis and DLS measurements show that the CSA@MNPs at CSA-loading > 0.2 mmol/g were stable at pH > 4. The salt tolerance of the product improved up to ~0.5 M NaCl at pH~6.3. Under favorable redox conditions, no iron leaching from the magnetic core was detected by ICP measurements. Thus, the characterization predicts both chemical and colloidal stability of CSA@MNPs in biological milieu regarding its pH and salt concentration. MTT assays showed no significant impact of CSA@MNP on the proliferation of A431 cells. According to these facts, the CSA@MNPs have a great potential in biocompatible MF preparation for medical applications.


Desalination ◽  
2008 ◽  
Vol 234 (1-3) ◽  
pp. 166-174 ◽  
Author(s):  
Nai-Yi Yuan ◽  
Ruei-Yi Tsai ◽  
Ming-Hwa Ho ◽  
Da-Ming Wang ◽  
Juin-Yih Lai ◽  
...  

2006 ◽  
Vol 514-516 ◽  
pp. 1005-1009 ◽  
Author(s):  
José V. Araújo ◽  
J.A. Lopes da Silva ◽  
Margarida M. Almeida ◽  
Maria Elisabete V. Costa

Porous chitosan/brushite composite scaffolds were prepared by a freeze-drying technique, starting from brushite suspensions in chitosan solutions. The obtained scaffolds showed a regular macroporous and interconnected structure with brushite particles uniformly distributed in the chitosan matrix. The variation of the brushite concentration affected the microstructure of the final freeze-dried scaffold, in particular, its porosity and its average pore size. The yield strengths of the composite scaffolds could also be improved by the increase of the brushite content.


Sign in / Sign up

Export Citation Format

Share Document