Direct measurement of shape memory effect for Ni54Mn21Ga25, Ni50Mn41.2In8.8 Heusler alloys in high magnetic field

2019 ◽  
Vol 482 ◽  
pp. 317-322 ◽  
Author(s):  
Dmitry S. Kuchin ◽  
Elvina T. Dilmieva ◽  
Yurii S. Koshkid'ko ◽  
Alexander P. Kamantsev ◽  
Victor V. Koledov ◽  
...  
2016 ◽  
Vol 111 ◽  
pp. 110-113 ◽  
Author(s):  
A.S. Turabi ◽  
H.E. Karaca ◽  
H. Tobe ◽  
B. Basaran ◽  
Y. Aydogdu ◽  
...  

2011 ◽  
Vol 684 ◽  
pp. 139-150 ◽  
Author(s):  
Ryosuke Kainuma ◽  
W. Ito ◽  
R.Y. Umetsu ◽  
V.V. Khovaylo ◽  
T. Kanomata

In some Ni-Mn-In- and Ni-Mn-Sn-based Heusler-type alloys, martensitic transformation from the ferromagnetic parent phase to the paramagnetic martensite phase appears and magnetic field-induced reverse transformation, namely, metamagnetic phase transition, is detected. In this paper, the metamagnetic shape memory effect due to the metamagnetic phase transition and the magnetostress effect in the Ni-Co-Mn-In alloys are introduced and the phase diagrams of Ni50Mn50-yXy (X: In, Sn, Sb) alloys are shown as basic information. Furthermore, the magnetic properties of both the parent and martensite phases in the Ni-Mn-In- and Ni-Mn-Sn-based metamagnetic shape memory alloys are also reviewed.


ChemInform ◽  
2012 ◽  
Vol 43 (12) ◽  
pp. no-no
Author(s):  
R. Kainuma ◽  
W. Ito ◽  
R. Y. Umetsu ◽  
V. V. Khovaylo ◽  
T. Kanomata

2001 ◽  
Vol 291 (2-3) ◽  
pp. 175-183 ◽  
Author(s):  
A.A. Cherechukin ◽  
I.E. Dikshtein ◽  
D.I. Ermakov ◽  
A.V. Glebov ◽  
V.V. Koledov ◽  
...  

2012 ◽  
Vol 189 ◽  
pp. 189-208 ◽  
Author(s):  
Vijay Srivastava ◽  
Kanwal Preet Bhatti

Although Heusler alloys have been known for more than a century, but since the last decade there has been a quantum jump in research in this area. Heusler alloys show remarkable properties, such as ferromagnetic shape memory effect, magnetocaloric effect, half metallicity, and most recently it has been shown that it can be used for direct conversion of heat into electricity. Heusler alloys Ni-Mn-Z (Z=Ga, Al, In, Sn, Sb), show a reversible martensitic transformation and unusual magnetic properties. Other classes of intermetallic Heusler alloy families that are half metallic (such as the half Heusler alloys Ni-Mn-Sb and the full Heusler alloy Co2MnGe) are attractive because of their high Curie temperature and structural similarity to binary semiconductors. Unlike Ni-Mn-Ga, Ni-Mn-In and Ni-Mn-Sn transform from ferromagnetic austenite to non-ferromagnetic martensite. As is consistent with the Clausius-Clapeyron equation, the martensitic phase transformation can be manipulated by a magnetic field, leading to possible applications of these materials enabling the magnetic shape memory effect, energy conversion and solid state refrigeration. In this paper, we summarize the salient features of Heusler alloys, like the structure, magnetic properties and potential application of this family of alloys in industry.


2010 ◽  
Vol 654-656 ◽  
pp. 2107-2110
Author(s):  
Jun Hyun Han ◽  
Tae Ahn ◽  
Hyun Kim ◽  
Kwang Koo Jee

The shape memory effect (SME) and magnetic shape memory effect (MSME) Fe-Pd thin film are using the film curvature method. The corresponding residual stress change due to theSME and MSME in Fe-Pd film is measuredduring thermal cycling and magnetic field changing. AFe-Pd thin film with a lateral composition gradient is deposited onto micromachined x7 cantilever beam arraysubstrate,such that each of the cantilever beams is coated with a film of different composition.There is abrupt stress change in only .1 at % Pd as the temperature of the film is cycled, and the corresponding stress change was measured as 0.16 GPa. The film with .4 at % Pd showsthe abrupt stress change at 0.7 Tesla, which means that the composition has the MSME.


2012 ◽  
Vol 476-478 ◽  
pp. 1504-1507
Author(s):  
Hai Bo Wang ◽  
Shang Shen Feng ◽  
Pei Yang Cai ◽  
Yan Qiu Huo

The martensitic transformation, crystalline structure, microstructure and shape memory effect of the Ni53.25Mn21.75Ga25 (at.%) alloy are investigated by means of Differential Scanning Calorimetry (DSC), X-ray diffraction (XRD), Transmission Electron Microscope (TEM) and the standard metal strain gauge technique. The XRD results showed that the Ni53.25Mn21.75Ga25 alloy is composed of cubic parent phase at room temperature. TEM observation proved that the typical twin martensite is tetragonal structure and tweed-like contrast which is typical image for the parent phase. A large reversible transformation strain, about 0.54%, is obtained in this undeformed polycrystalline alloy due to martensitic transformation and its reverse transformation. This transformation strain is also increased to 0.65% by the external magnetic field. It is believed that the effect of the magnetic field on the preferential orientation of martensitic variants increases the transformation strain.


2006 ◽  
Vol 47 (3) ◽  
pp. 625-630 ◽  
Author(s):  
Makoto Ohtsuka ◽  
Yuya Konno ◽  
Minoru Matsumoto ◽  
Toshiyuki Takagi ◽  
Kimio Itagaki

Sign in / Sign up

Export Citation Format

Share Document