scholarly journals Real-time in-line steel microstructure control through magnetic properties using an EM sensor

2019 ◽  
Vol 490 ◽  
pp. 165504 ◽  
Author(s):  
Jialong Shen ◽  
Lei Zhou ◽  
Will Jacobs ◽  
Peter Hunt ◽  
Claire Davis
2021 ◽  
Vol 30 (4) ◽  
pp. 2916-2929
Author(s):  
Tushar R. Dandekar ◽  
Amit Kumar ◽  
Rajesh K. Khatirkar ◽  
Diksha Mahadule ◽  
Gowthaman Ayyappan

Author(s):  
Junjie Xu ◽  
Kai Zhu ◽  
Song Gao ◽  
Yanglong Hou

The routes for the optimization of the magnetic properties of rare earth permanent magnetic nanostructures are discussed, i.e. the control of microstructure, such as size and shape as well as the exchange-coupling interactions.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
O. Sobol ◽  
F. Straub ◽  
Th. Wirth ◽  
G. Holzlechner ◽  
Th. Boellinghaus ◽  
...  

1979 ◽  
Vol 44 ◽  
pp. 41-47
Author(s):  
Donald A. Landman

This paper describes some recent results of our quiescent prominence spectrometry program at the Mees Solar Observatory on Haleakala. The observations were made with the 25 cm coronagraph/coudé spectrograph system using a silicon vidicon detector. This detector consists of 500 contiguous channels covering approximately 6 or 80 Å, depending on the grating used. The instrument is interfaced to the Observatory’s PDP 11/45 computer system, and has the important advantages of wide spectral response, linearity and signal-averaging with real-time display. Its principal drawback is the relatively small target size. For the present work, the aperture was about 3″ × 5″. Absolute intensity calibrations were made by measuring quiet regions near sun center.


Author(s):  
A.R. Pelton ◽  
A.F. Marshall ◽  
Y.S. Lee

Amorphous materials are of current interest due to their desirable mechanical, electrical and magnetic properties. Furthermore, crystallizing amorphous alloys provides an avenue for discerning sequential and competitive phases thus allowing access to otherwise inaccessible crystalline structures. Previous studies have shown the benefits of using AEM to determine crystal structures and compositions of partially crystallized alloys. The present paper will discuss the AEM characterization of crystallized Cu-Ti and Ni-Ti amorphous films.Cu60Ti40: The amorphous alloy Cu60Ti40, when continuously heated, forms a simple intermediate, macrocrystalline phase which then transforms to the ordered, equilibrium Cu3Ti2 phase. However, contrary to what one would expect from kinetic considerations, isothermal annealing below the isochronal crystallization temperature results in direct nucleation and growth of Cu3Ti2 from the amorphous matrix.


Author(s):  
Alan S. Rudolph ◽  
Ronald R. Price

We have employed cryoelectron microscopy to visualize events that occur during the freeze-drying of artificial membranes by employing real time video capture techniques. Artificial membranes or liposomes which are spherical structures within internal aqueous space are stabilized by water which provides the driving force for spontaneous self-assembly of these structures. Previous assays of damage to these structures which are induced by freeze drying reveal that the two principal deleterious events that occur are 1) fusion of liposomes and 2) leakage of contents trapped within the liposome [1]. In the past the only way to access these events was to examine the liposomes following the dehydration event. This technique allows the event to be monitored in real time as the liposomes destabilize and as water is sublimed at cryo temperatures in the vacuum of the microscope. The method by which liposomes are compromised by freeze-drying are largely unknown. This technique has shown that cryo-protectants such as glycerol and carbohydrates are able to maintain liposomal structure throughout the drying process.


Sign in / Sign up

Export Citation Format

Share Document