scholarly journals Waves in one-dimensional quasicrystalline structures: dynamical trace mapping, scaling and self-similarity of the spectrum

2018 ◽  
Vol 119 ◽  
pp. 83-103 ◽  
Author(s):  
Lorenzo Morini ◽  
Massimiliano Gei
2006 ◽  
Vol 38 (02) ◽  
pp. 451-464 ◽  
Author(s):  
T. J. Kozubowski ◽  
M. M. Meerschaert ◽  
K. Podgórski

Fractional Laplace motion is obtained by subordinating fractional Brownian motion to a gamma process. Used recently to model hydraulic conductivity fields in geophysics, it might also prove useful in modeling financial time series. Its one-dimensional distributions are scale mixtures of normal laws, where the stochastic variance has the generalized gamma distribution. These one-dimensional distributions are more peaked at the mode than is a Gaussian distribution, and their tails are heavier. In this paper we derive the basic properties of the process, including a new property called stochastic self-similarity. We also study the corresponding fractional Laplace noise, which may exhibit long-range dependence. Finally, we discuss practical methods for simulation.


Fractals ◽  
2004 ◽  
Vol 12 (03) ◽  
pp. 331-346 ◽  
Author(s):  
SERGIO BIANCHI

In studying the scale invariance of an empirical time series a twofold problem arises: it is necessary to test the series for self-similarity and, once passed such a test, the goal becomes to estimate the parameter H0 of self-similarity. The estimation is therefore correct only if the sequence is truly self-similar but in general this is just assumed and not tested in advance. In this paper we suggest a solution for this problem. Given the process {X(t),t∈T}, we propose a new test based on the diameter δ of the space of the rescaled probability distribution functions of X(t). Two necessary conditions are deduced which contribute to discriminate self-similar processes and a closed formula is provided for the diameter of the fractional Brownian motion (fBm). Furthermore, by properly choosing the distance function, we reduce the measure of self-similarity to the Smirnov statistics when the one-dimensional distributions of X(t) are considered. This permits the application of the well-known two-sided test due to Kolmogorov and Smirnov in order to evaluate the statistical significance of the diameter δ, even in the case of strongly dependent sequences. As a consequence, our approach both tests the series for self-similarity and provides an estimate of the self-similarity parameter.


1994 ◽  
Vol 367 ◽  
Author(s):  
B.B. Mandelbrot ◽  
A. Vespignani ◽  
H. Kaufman

AbstractIn order to understand better the morphology and the asymptotic behavior in Diffusion Limited Aggregation (DLA), we studied a large numbers of very large off-lattice circular clusters. We inspected both dynamical and geometric asymptotic properties, namely the moments of the particle's sticking distances and the scaling behavior of the transverse growth crosscuts, i.e., the one dimensional cuts by circles. The emerging picture for radial DLA departs from simple self-similarity for any finite size. It corresponds qualitatively to the scenario of infinite drift starting from the familiar five armed shape for small sizes and proceeding to an increasingly tight multi-armed shape. We show quantitatively how the lacunarity of circular clusters becomes increasingly “compact” with size. Finally, we find agreement among transverse cuts dimensions for clusters grown in different geometries, suggesting that the question of universality is best addressed on the crosscut.


2006 ◽  
Vol 38 (2) ◽  
pp. 451-464 ◽  
Author(s):  
T. J. Kozubowski ◽  
M. M. Meerschaert ◽  
K. Podgórski

Fractional Laplace motion is obtained by subordinating fractional Brownian motion to a gamma process. Used recently to model hydraulic conductivity fields in geophysics, it might also prove useful in modeling financial time series. Its one-dimensional distributions are scale mixtures of normal laws, where the stochastic variance has the generalized gamma distribution. These one-dimensional distributions are more peaked at the mode than is a Gaussian distribution, and their tails are heavier. In this paper we derive the basic properties of the process, including a new property called stochastic self-similarity. We also study the corresponding fractional Laplace noise, which may exhibit long-range dependence. Finally, we discuss practical methods for simulation.


Sign in / Sign up

Export Citation Format

Share Document