Tension-compression asymmetry of the stress-strain behavior of the stacked graphene assembly: Experimental measurement and theoretical interpretation

2021 ◽  
Vol 157 ◽  
pp. 104642
Author(s):  
Yang Gao ◽  
Yujie Xie ◽  
Anran Wei ◽  
Yujie Wei ◽  
Tao Chen ◽  
...  
1980 ◽  
Vol 102 (2) ◽  
pp. 255-263 ◽  
Author(s):  
F. P. J. Rimrott ◽  
A. Singh

The present paper establishes and interprets the global uniaxial stress-strain behavior of regularly perforated plate, throughout the elastic, partly plastic, and fully plastic regimes up to fracture, as function of hole size and number. The elastic part of the stress-strain curve is described by means of an effective modulus of elasticity which is obtained by using the strain energy stored in the plate. During the partly plastic range, perforated plate response has been found to be governed essentially by the remaining elastic portion and consequently appears as part of the elastic behavior. Beyond global yield point, the material is nearly perfectly plastic for a large range of strains and upper and lower limits of collapse load are calculated by using upper and lower-bound techniques for a perfectly plastic material. Experiments were conducted and serve as the basis for the theoretical interpretation.


2012 ◽  
Vol 1 (3) ◽  
pp. 32-38
Author(s):  
Tantary M.A ◽  
◽  
Upadhyay A ◽  
Prasad J ◽  
◽  
...  

1985 ◽  
Vol 58 (4) ◽  
pp. 830-856 ◽  
Author(s):  
R. J. Cembrola ◽  
T. J. Dudek

Abstract Recent developments in nonlinear finite element methods (FEM) and mechanics of composite materials have made it possible to handle complex tire mechanics problems involving large deformations and moderate strains. The development of an accurate material model for cord/rubber composites is a necessary requirement for the application of these powerful finite element programs to practical problems but involves numerous complexities. Difficulties associated with the application of classical lamination theory to cord/rubber composites were reviewed. The complexity of the material characterization of cord/rubber composites by experimental means was also discussed. This complexity arises from the highly anisotropic properties of twisted cords and the nonlinear stress—strain behavior of the laminates. Micromechanics theories, which have been successfully applied to hard composites (i.e., graphite—epoxy) have been shown to be inadequate in predicting some of the properties of the calendered fabric ply material from the properties of the cord and rubber. Finite element models which include an interply rubber layer to account for the interlaminar shear have been shown to give a better representation of cord/rubber laminate behavior in tension and bending. The application of finite element analysis to more refined models of complex structures like tires, however, requires the development of a more realistic material model which would account for the nonlinear stress—strain properties of cord/rubber composites.


2014 ◽  
Vol 46 ◽  
pp. 65-72 ◽  
Author(s):  
Jodilson Amorim Carneiro ◽  
Paulo Roberto Lopes Lima ◽  
Mônica Batista Leite ◽  
Romildo Dias Toledo Filho

1978 ◽  
Vol 12 (3) ◽  
pp. 265-269 ◽  
Author(s):  
S. Miura ◽  
F. Hori ◽  
N. Nakanishi

Sign in / Sign up

Export Citation Format

Share Document