Global Stress-Strain Behavior of Perforated Plate

1980 ◽  
Vol 102 (2) ◽  
pp. 255-263 ◽  
Author(s):  
F. P. J. Rimrott ◽  
A. Singh

The present paper establishes and interprets the global uniaxial stress-strain behavior of regularly perforated plate, throughout the elastic, partly plastic, and fully plastic regimes up to fracture, as function of hole size and number. The elastic part of the stress-strain curve is described by means of an effective modulus of elasticity which is obtained by using the strain energy stored in the plate. During the partly plastic range, perforated plate response has been found to be governed essentially by the remaining elastic portion and consequently appears as part of the elastic behavior. Beyond global yield point, the material is nearly perfectly plastic for a large range of strains and upper and lower limits of collapse load are calculated by using upper and lower-bound techniques for a perfectly plastic material. Experiments were conducted and serve as the basis for the theoretical interpretation.

1966 ◽  
Vol 39 (5) ◽  
pp. 1489-1495
Author(s):  
L. C. Case ◽  
R. V. Wargin

Abstract A new theoretical treatment strongly indicates that an elastomer network actually consists of a system of fused, closed, interpenetrating loops of polymer chains. This interpenetrating loop structure restricts the movement of the chains and thereby affects the stress-strain behavior of the elastomer. Methods have been developed to enable the calculation of the number of effective crosslinks caused by loop interpenetrations (virtual crosslinks). The uniaxial stress-strain behavior of an elastomer predicted using our methods can be fitted almost perfectly to published experimental data by proper selection of chain parameters. Previous theoretical treatments gave only a qualitative fit to the experimental data for the stress-strain behavior of elastomers and were not capable of predicting the correct shape of the experimental stress-strain curve. The present treatment gives a nearly perfect fit for both stress as a function of strain at constant crosslink density, and stress as a function of crosslink density at constant strain, and thus represents a vast improvement.


Author(s):  
Qi-Wei Xia ◽  
Jian-Guo Gong ◽  
Fu-Zhen Xuan

This work is to address the creep analysis for components at elevated temperatures based on isochronous stress-strain curve and the elastic-perfectly plastic material model through numerical analyses. Numerical results presented that the creep deformation is very sensitive to the target inelastic strain chosen for analysis. A small inelastic strain, corresponding to a small yield stress, can cause very conservative result for the case studied. Moreover, the target inelastic strain, corresponding to the minimum inelastic strain along with the given path, is different from each other for various internal pressures.


2017 ◽  
Vol 10 (3) ◽  
pp. 547-567 ◽  
Author(s):  
D. A. GUJEL ◽  
C. S. KAZMIERCZAK ◽  
J. R. MASUERO

ABSTRACT This work analyses the methodology "A" (item A.4) employed by the Brazilian Standard ABNT 8522 (ABNT, 2008) for determining the stress-strain behavior of cylindrical specimens of concrete, presenting considerations about possible enhancements aiming it use for concretes with recycled aggregates with automatic test equipment. The methodology specified by the Brazilian Standard presents methodological issues that brings distortions in obtaining the stress-strain curve, as the use of a very limited number of sampling points and by inducing micro cracks and fluency in the elastic behavior of the material due to the use of steady stress levels in the test. The use of a base stress of 0.5 MPa is too low for modern high load test machines designed do high strength concrete test. The work presents a discussion over these subjects, and a proposal of a modified test procedure to avoid such situations.


2007 ◽  
Vol 558-559 ◽  
pp. 441-448 ◽  
Author(s):  
Jong K. Lee

During hot working, deformation of metals such as copper or austenitic steels involves features of both diffusional flow and dislocation motion. As such, the true stress-true strain relationship depends on the strain rate. At low strain rates (or high temperatures), the stress-strain curve displays an oscillatory behavior with multiple peaks. As the strain rate increases (or as the temperature is reduced), the number of peaks on the stress-strain curve decreases, and at high strain rates, the stress rises to a single peak before settling at a steady-state value. It is understood that dynamic recovery is responsible for the stress-strain behavior with zero or a single peak, whereas dynamic recrystallization causes the oscillatory nature. In the past, most predictive models are based on either modified Johnson-Mehl-Avrami kinetic equations or probabilistic approaches. In this work, a delay differential equation is utilized for modeling such a stress-strain behavior. The approach takes into account for a delay time due to diffusion, which is expressed as the critical strain for nucleation for recrystallization. The solution shows that the oscillatory nature depends on the ratio of the critical strain for nucleation to the critical strain for completion for recrystallization. As the strain ratio increases, the stress-strain curve changes from a monotonic rise to a single peak, then to a multiple peak behavior. The model also predicts transient flow curves resulting from strain rate changes.


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 246 ◽  
Author(s):  
Jorge Manuel Mercado-Colmenero ◽  
Cristina Martin-Doñate ◽  
Vincenzo Moramarco ◽  
Michele Angelo Attolico ◽  
Gilda Renna ◽  
...  

This manuscript presents an experimental and numerical analysis of the mechanical structural behavior of Nylstrong GF-PA6, a plastic material manufactured using FDM (fused deposition modeling) technology for a compression uniaxial stress field. Firstly, an experimental test using several test specimens fabricated in the Z and X-axis allows characterizing the elastic behavior of the reinforced GF-PA6 according to the ISO 604 standard for uniaxial compression stress environments in both Z and X manufacturing orientations. In a second stage, an experimental test analyzes the structural behavior of an industrial part manufactured under the same conditions as the test specimens. The experimental results for the test specimens manufactured in the Z and X-axis present differences in the stress-strain curve. Z-axis printed elements present a purely linear elastic behavior and lower structural integrity, while X-axis printed elements present a nonlinear elastic behavior typical of plastic and foam materials. In order to validate the experimental results, numerical analysis for an industrial part is carried out, defining the material GF-PA6 as elastic and isotropic with constant Young’s compression modulus according to ISO standard 604. Simulations and experimental tests show good accuracy, obtaining errors of 0.91% on the Z axis and 0.56% on the X-axis between virtual and physical models.


Author(s):  
Panos J Athanasiadis

Slackline is a new and rapidly expanding sport, which has had minimal research published on it in terms of sport physics and engineering. Slackline dynamics strongly depend upon the elastic response of used webbing, typically made of polyester or nylon. Depending on the stress and strain rates applied, polymers are known to exhibit a visco-elastic behavior characterized by hysteresis effects. Through a series of carefully executed experiments, this study examined the behavior of slackline webbing under dynamic loads to determine the departures from the respective static response (stress–strain curves). Such knowledge is fundamental for the accurate simulation of slackline dynamics, so as to predict peak forces and aid safe rigging. The results demonstrate that the effective modulus during leash falls was significantly higher than the slope of the respective stress–strain curve, indicating a stiffer response. Also, the effective modulus increased with the applied pretension. Using the moduli determined experimentally for the rigged slacklines with different types of webbing, the respective leash falls were simulated numerically with high accuracy. A standardized test is proposed, to be adopted by the International Slackline Association and slackline webbing manufacturers, is proposed in order to provide key information on the response of each webbing available in the market under typical dynamic loads, similar to the “impact force” test designed for dynamic ropes by the International Climbing and Mountaineering Federation.


Author(s):  
P. Dong ◽  
Z. Cao ◽  
J. K. Hong

In the context of fatigue evaluation in the low-cycle regime, the use of the master S-N curve in conjunction with elastic FE-based structural stress calculations is presented. An elastic pseudo structural stress estimation is introduced by assuming that Neuber’s rule applies in relating structural stress and strain concentration at a weld to the material’s cyclic stress-strain behavior. With the pseudo structural stress procedure, recent sources of recent full scale test data on pipe and vessel welds were analyzed as a validation of the proposed procedure. The estimated fatigue lives versus actual test lives show a reasonable agreement. Finally, the feasibility of using monotonic stress-strain curves as a first approximation is also examined for applications when cyclic stress-strain curve may not be readily found. The analysis results indicate that the life estimations using monotonic stress-strain curves are reasonable, with the recent test data falling within mean ± 2σ, where σ represents the standard deviation of the master S-N curve.


2005 ◽  
Vol 40 (6) ◽  
pp. 599-607 ◽  
Author(s):  
X. P Huang

The basic autofrettage theory assumes elastic-perfectly plastic behaviour. Because of the Bauschinger effect and strain-hardening, most materials do not display elastic-perfectly plastic properties and consequently various autofrettage models are based on different simplified material strain-hardening models, which assume linear strain-hardening or power strain-hardening or a combination of these strain-hardening models. This approach gives a more accurate prediction than the elastic-perfectly plastic model and is suitable for different strain-hardening materials. In this paper, a general autofrettage model that incorporates the material strain-hardening relationship and the Bauschinger effect, based upon the actual tensile-compressive stress-strain curve of a material is proposed. The model incorporates the von Mises yield criterion, an incompressible material, and the plane strain condition. Analytic expressions for the residual stress distribution have been derived. Experimental results show that the present model has a stronger curve-fitting ability and gives a more accurate prediction. Several other models are shown to be special cases of the general model presented in this paper. The parameters needed in the model are determined by fitting the actual tensile-compressive curve of the material, and the maximum strain of this curve should closely represent the maximum equivalent strain at the inner surface of the cylinder under maximum autofrettage pressure.


1955 ◽  
Vol 28 (1) ◽  
pp. 24-35 ◽  
Author(s):  
S. M. Gumbrell ◽  
L. Mullins ◽  
R. S. Rivlin

Abstract It is shown that the equilibrium stress-strain behavior of highly swollen rubber vulcanizates in simple extension agrees with the predictions of the kinetic theory. The departures from these predictions which are found in dry or lightly swollen rubbers have been investigated, and it is shown that they can be described in terms of a single parameter C2. The magnitude of this parameter is large in dry rubbers, and decreases to zero at high degrees of swelling ; this decrease occurs linearly with decrease in the volume fraction of rubber. The value of C2 is found to be independent of the nature of the rubber polymer, of the degree of vulcanization, and of the nature of the swelling liquid. The possible significance of this parameter is discussed in light of these observations.


Sign in / Sign up

Export Citation Format

Share Document