Detection of highly overlapping peaks via adaptive apodization

2021 ◽  
pp. 107104
Author(s):  
Ruis MacDonald ◽  
Stanislav Sokolenko
Keyword(s):  
Metabolites ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 214
Author(s):  
Aneta Sawikowska ◽  
Anna Piasecka ◽  
Piotr Kachlicki ◽  
Paweł Krajewski

Peak overlapping is a common problem in chromatography, mainly in the case of complex biological mixtures, i.e., metabolites. Due to the existence of the phenomenon of co-elution of different compounds with similar chromatographic properties, peak separation becomes challenging. In this paper, two computational methods of separating peaks, applied, for the first time, to large chromatographic datasets, are described, compared, and experimentally validated. The methods lead from raw observations to data that can form inputs for statistical analysis. First, in both methods, data are normalized by the mass of sample, the baseline is removed, retention time alignment is conducted, and detection of peaks is performed. Then, in the first method, clustering is used to separate overlapping peaks, whereas in the second method, functional principal component analysis (FPCA) is applied for the same purpose. Simulated data and experimental results are used as examples to present both methods and to compare them. Real data were obtained in a study of metabolomic changes in barley (Hordeum vulgare) leaves under drought stress. The results suggest that both methods are suitable for separation of overlapping peaks, but the additional advantage of the FPCA is the possibility to assess the variability of individual compounds present within the same peaks of different chromatograms.


1975 ◽  
Vol 30 (5-6) ◽  
pp. 311-317 ◽  
Author(s):  
E Tränkle

Abstract Computer Analysis, Electrophoresis, Ultracentrifugation A Gaussian-like distribution function with three additional parameters is introduced which describes well the electrophoresis patterns of albumin, prealbumin and transferrin. Electrophoresis and ultracentrifugation patterns with 10-15 overlapping peaks are analyzed by means of the FORTRAN-program DIANA. One obtains the (relative) areas, positions and widths of the peaks. The analysis of a series of patterns proceeds in an automated way after the number of molecular components as well as starting values of the positions and the widths have been chosen in a test period.


2013 ◽  
Vol 28 (S2) ◽  
pp. S458-S469 ◽  
Author(s):  
Kenny Ståhl ◽  
Christian G. Frankær ◽  
Jakob Petersen ◽  
Pernille Harris

Powder diffraction from protein powders using in-house diffractometers is an effective tool for identification and monitoring of protein crystal forms and artifacts. As an alternative to conventional powder diffractometers a single crystal diffractometer equipped with an X-ray micro-source can be used to collect powder patterns from 1 µl samples. Using a small-angle X-ray scattering (SAXS) camera it is possible to collect data within minutes. A streamlined program has been developed for the calculation of powder patterns from pdb-coordinates, and includes correction for bulk-solvent. A number of such calculated powder patterns from insulin and lysozyme have been included in the powder diffraction database and successfully used for search-match identification. However, the fit could be much improved if peak asymmetry and multiple bulk-solvent corrections were included. When including a large number of protein data sets in the database some problems can be foreseen due to the large number of overlapping peaks in the low-angle region, and small differences in unit cell parameters between pdb-data and powder data. It is suggested that protein entries are supplied with more searchable keywords as protein name, protein type, molecular weight, source organism etc. in order to limit possible hits.


Sign in / Sign up

Export Citation Format

Share Document