scholarly journals Facile fabrication of novel analcime/sodium aluminum silicate hydrate and zeolite Y/faujasite mesoporous nanocomposites for efficient removal of Cu(II) and Pb(II) ions from aqueous media

2020 ◽  
Vol 9 (4) ◽  
pp. 7900-7914 ◽  
Author(s):  
Ehab A. Abdelrahman ◽  
Ahmed Alharbi ◽  
Abdu Subaihi ◽  
Ahmed M. Hameed ◽  
Mohammed A. Almutairi ◽  
...  
2019 ◽  
Vol 43 (9) ◽  
pp. 3810-3820 ◽  
Author(s):  
Ganesan Sriram ◽  
U. T. Uthappa ◽  
Madhuprasad Kigga ◽  
Ho-Young Jung ◽  
Tariq Altalhi ◽  
...  

The surface of a naturally available diatom was modified using a xerogel for the enhanced removal of malachite green from aqueous media.


2010 ◽  
Vol 64 ◽  
pp. 7-12
Author(s):  
Marju Mannila ◽  
Antti Häkkinen

The object of the research was to compare the corrosion resistance of three types of multioxide technical ceramics in hydrofluoric acid containing aqueous media according to a full factorial experimental plan with pH and fluoride ion concentration as variables. The samples were a silicon carbide doped aluminum silicate material, and two membrane coated aluminum silicates with one containing a membrane on both sides of the ceramic plate. The substrates contained more additives on alumina, while the membrane coats were of higher grade aluminum oxide. The samples were shaken in containers for up to two weeks, and their remaining hardness and weight losses were measured. Daily samples drawn from the liquid phase were analyzed for dissolved components. With respect to all measured properties, fluoride concentration affected the materials more detrimentally than alterations in pH.


2018 ◽  
Vol 181 ◽  
pp. 05001
Author(s):  
Ari Widayanti ◽  
A. A. Soemitro Ria ◽  
Januarti Jaya Ekaputri ◽  
Hitapria Suprayitno

Reclaimed Asphalt Pavement (RAP) is a dredging pavement material using Cold Milling Machine. The application of Reclaimed Asphalt Pavement is increased year by year. Due to the increasing application of RAP year by year which implicates environment condition, especially in damaging natural resources, the research on material used in RAP needs to be conducted, so RAP can be optimally utilized. To achieve optimal performance, data of RAP characteristics reviewed from microstructural analysis is necessary. The objective of this research is to obtain the characteristics of Reclaimed Asphalt Pavement. The method used was literary study based on previous research. Material tests used were XRF, SEM and FTIR. The object of study was RAP material taken from national road Waru Sidoarjo. The major compositions of Reclaimed Asphalt Pavement obtained were Kaolin, Lithium, Tetraborate, Dextrin. SEM graphics showed the morphological and surface texture of RAP. FTIR graphic presented the functional group of Reclaimed Asphalt Pavement showing O-H C-O acid in the peak of graphic. From XRD result, the major compounds of Reclaimed Asphalt Pavement obtained were Calcium, Sodium, Aluminum, Silicate.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Tao Long ◽  
Qingyuan Wang ◽  
Zhongwei Guan ◽  
Yu Chen ◽  
Xiaoshuang Shi

Fly ash geopolymer concrete (FAGC) and ordinary Portland cement concrete (OPCC) specimens were immersed in 5% MgSO4solution undergoing 32 wetting-drying and heating-cooling cycles. Their compressive behavior was investigated after every 8 cycles. Several microstructure analysis techniques were applied on the samples to identify the materials formed due to magnesium sulfate attack, including XRD, FTIR, SEM, and EDS. Experimental results elucidated that the compressive strength loss ratio in the heating group of FAGC was 12.7%, while that of OPCC was 17.8%, which means that FAGC had better magnesium sulfate resistance than OPCC. The compressive strength loss of OPCC was due to the formation of gypsum under the magnesium sulfate attack exposed to wetting-drying and heating-cooling cycles. The deterioration mechanisms of FAGC against MgSO4solution were discovered to be that sodium aluminum silicate hydrate (N-A-S-H) gels reacted with MgSO4, leading to the creation of low strength magnesium aluminum silicate hydrate (M-A-S-H) gels.


Sign in / Sign up

Export Citation Format

Share Document