scholarly journals Hot deformation behavior and dynamic recrystallization mechanism of an Mg-5wt.%Zn alloy with trace SiCp addition

2021 ◽  
Vol 10 ◽  
pp. 422-437
Author(s):  
Ding-ge Fan ◽  
Kun-kun Deng ◽  
Cui-ju Wang ◽  
Kai-bo Nie ◽  
Quan-xin Shi ◽  
...  
Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1743 ◽  
Author(s):  
Lei Luo ◽  
Zhiyi Liu ◽  
Song Bai ◽  
Juangang Zhao ◽  
Diping Zeng ◽  
...  

The hot deformation behavior of an Al-Zn-Mg-Cu alloy was investigated by hot compression test at deformation temperatures varying from 320 to 440 °C with strain rates ranging from 0.01 to 10 s−1. The results show that the Mg(Zn, Cu)2 particles as a result of the sufficient static precipitation prior to hot compression have an influence on flow softening. A constitutive model compensated with strain was developed from the experimental results, and it proved to be accurate for predicting the hot deformation behavior. Processing maps at various strains were established. The microstructural evolution demonstrates that the dominant dynamic softening mechanism stems from dynamic recovery (DRV) and partial dynamic recrystallization (DRX). The recrystallization mechanism is continuous dynamic recrystallization (CDRX). The microstructure observations are in good agreement with the results of processing maps. On account of the processing map and microstructural observation, the optimal hot processing parameters at a strain of 0.6 are at deformation temperature range of 390–440 °C and strain rate range of 0.010–0.316 s−1 with a peak efficiency of 0.390.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3739
Author(s):  
Siming Hua ◽  
Pingze Zhang ◽  
Zili Liu ◽  
Lin Yang

In this study, the hot deformation of a Cu–0.55Sn–0.08La (wt.%) alloy was studied using a Gleeble-3180 testing machine at deformation temperatures of 400–700 °C and various strain rates. The stress–strain curve showed that the hot deformation behavior of the Cu–0.55Sn–0.08La (wt.%) alloy was significantly affected by work hardening, dynamic recovery, and dynamic recrystallization. The activation energy Q was 261.649 kJ·mol−1 and hot compression constitutive equation was determined as  ε˙=[sinh(0.00651σ)]10.2378·exp(33.6656−261.649RT). The microstructural evolution of the alloy during deformation at 400 °C revealed the presence of both slip and shear bands in the grains. At 700 °C, dynamic recrystallization grains were observed, but recrystallization was incomplete. In summary, these results provide the theoretical basis for the continuous extrusion process of alloys with promising application prospects in the future.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Ming-wei Guo ◽  
Zhen-hua Wang ◽  
Ze-an Zhou ◽  
Shu-hua Sun ◽  
Wan-tang Fu

316LN stainless steel with 0.08%N (08N) and 0.17%N (17N) was compressed at 1073–1473 K and 0.001–10 s−1. The hot deformation behavior was investigated using stress-strain curve analysis, processing maps, and so forth. The microstructure was analyzed through electron backscatter diffraction analysis. Under most conditions, the deformation resistance of 17N was higher than that of 08N. This difference became more pronounced at lower temperatures. The strain rate sensitivity increased with increasing temperature for types of steel. In addition, the higher the N content, the higher the strain rate sensitivity. Hot deformation activation energy increased from 487 kJ/mol to 549 kJ/mol as N concentration was increased from 0.08% to 0.17%. The critical strain for initiation of dynamic recrystallization was lowered with increasing N content. In the processing maps, both power dissipation ratio and unstable region increased with increasing N concentration. In terms of microstructure evolution, N promoted dynamic recrystallization kinetic and decreased dynamic recrystallization grain size. The grain growth rate was lower in 17N than in 08N during heat treatment. Finally, it was found that N favored twin boundary formation.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1940 ◽  
Author(s):  
Jianmei Kang ◽  
Yuhui Wang ◽  
Zhimeng Wang ◽  
Yiming Zhao ◽  
Yan Peng ◽  
...  

Hot deformation behavior of Fe-30Mn-0.11C steel was investigated. Hot compression tests were carried out at various temperatures ranging from 800 °C to 1200 °C and at different strain rates of 0.01 s−1 to 10 s−1. The constitutive equation based on peak stress was established. Hot processing maps at different strains and recrystallization diagrams were also established and analyzed. The results show that dynamic recrystallization easily occur at high deformation temperatures and low strain rates. Safe and unstable zones are determined at the true strain of 0.6 and 0.7, and the hot deformation process parameters of partial dynamic recrystallization of the tested steel are also obtained.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5367
Author(s):  
Yan Zhang ◽  
Ming Yang ◽  
Shaolei Long ◽  
Bo Li ◽  
Yilong Liang ◽  
...  

M50NiL steel, which belongs to a new generation of case-hardening steels used in aerospace bearing applications, is used mainly for the manufacturing of aerospace transmission components that operate under high temperatures. In this study, the effects of the hot deformation parameters and the initial microstructure on the hot deformation behavior of M50NiL steel were investigated through Gleeble-3500 isothermal hot compression tests. The experimental results demonstrated that the critical stain of dynamic recrystallization and the deformation activation energy of the coarse-grained samples were higher than those of the fine-grained samples. This is attributed to the difficulty of deformation and the dynamic recrystallization behavior of coarse-grained samples. Moreover, fine-grained samples contain a large number of dispersed phases, which can pin the grain boundaries and inhibit the growth of recrystallized grains. Such phenomena are beneficial for obtaining finer and more uniform microstructures in M50NiL steel. The experimental results can provide a useful reference for preparing M50NiL steel with excellent mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document