scholarly journals Dislocation-climbing bypass over dispersoids with different lattice misfit in creep deformation of FeCrAl oxide dispersion-strengthened alloys

Author(s):  
Shigeharu Ukai ◽  
Shinichiro Yamashita
2010 ◽  
Vol 638-642 ◽  
pp. 2309-2314
Author(s):  
Kei Shinozuka ◽  
Hisao Esaka ◽  
M. Tamura ◽  
Hiroyasu Tanigawa

In international thermonuclear experimental reactor (ITER), reduced activation ferritic/martensitic steels will be used for plasma-facing materials. However, it is necessary to raise the temperature of operation in order to elevate efficiency of electric power generation by using the material which is more excellent in strength at elevated temperature. Oxide dispersion strengthened (ODS) steels are promising candidate for high temperature materials of a nuclear fusion reactor. There are many reports that ODS steels show very high creep strength, but there are few reports on creep deformation mechanism. In this work, creep deformation behavior of 8 wt% Cr ODS steel was investigated. This ODS steel had high density of fine dispersed Y2Ti2O7 particles and -ferrite grains elongated along the hot-rolling direction. The creep curve showed a low creep strain rate until specimen ruptured. Vickers hardness of the gauge part of specimens in interrupted creep tests decreased with increasing the loading time. However, that of the grip part did not change significantly. Accordingly, although dynamic recovery occurred in the ODS steel, it had not affected the creep deformation rate.


Materialia ◽  
2020 ◽  
Vol 12 ◽  
pp. 100788 ◽  
Author(s):  
Rajesh Jarugula ◽  
P. Suresh Babu ◽  
S. Ganesh Sundara Raman ◽  
G. Sundararajan

Author(s):  
Jordi Marti ◽  
Timothy E. Howson ◽  
David Kratz ◽  
John K. Tien

The previous paper briefly described the fine microstructure of a mechanically alloyed oxide dispersion strengthened nickel-base solid solution. This note examines the fine microstructure of another mechanically alloyed system. This alloy differs from the one described previously in that it is more generously endowed with coherent precipitate γ forming elements A1 and Ti and it contains a higher volume fraction of the finely dispersed Y2O3 oxide. An interesting question to answer in the comparative study of the creep and stress rupture of these two ODS systems is the role of the precipitate γ' in the mechanisms of creep and stress rupture in alloys already containing oxide dispersoids.The nominal chemical composition of this alloy is Ni - 20%Cr - 2.5%Ti - 1.5% A1 - 1.3%Y203 by weight. The system receives a three stage heat treatment-- the first designed to produce a coarse grain structure similar to the solid solution alloy but with a smaller grain aspect ratio of about ten.


Sign in / Sign up

Export Citation Format

Share Document