Dependence of corrosion resistance on grain boundary characteristics in a high nitrogen CrMn austenitic stainless steel

2017 ◽  
Vol 33 (12) ◽  
pp. 1621-1628 ◽  
Author(s):  
Jianjun Qi ◽  
Boyuan Huang ◽  
Zhenhua Wang ◽  
Hui Ding ◽  
Junliang Xi ◽  
...  
2007 ◽  
Vol 539-543 ◽  
pp. 4962-4967 ◽  
Author(s):  
Hiroyuki Kokawa ◽  
W.Z. Jin ◽  
Zhan Jie Wang ◽  
M. Michiuchi ◽  
Yutaka S. Sato ◽  
...  

Large amount of nitrogen addition into an austenitic stainless steel can improve the mechanical properties and corrosion resistance remarkably as far as the nitrogen is in solid solution. However, once the nitrogen precipitates as nitride, it results in deteriorations in the properties of the high nitrogen austenitic stain steel. During welding, a high nitrogen austenitic stainless steel is ready to precipitate rapidly immense amounts of chromium nitride in the heat affected zone (HAZ), as intergranular or cellular morphologies at or from grain boundaries into grain interiors. The nitride precipitation reduces seriously the local mechanical properties and corrosion resistance. The present authors have demonstrated that a thermomechanical-processing as grain boundary engineering (GBE) inhibited intergranular chromium carbide precipitation in the HAZ of a type 304 austenitic stainless steel during welding and improved the intergranular corrosion resistance drastically. In the present study, the thermomechanical-processing was applied to a high nitrogen austenitic stainless steel containing 1 mass% nitrogen to suppress the nitride precipitation at or from grain boundaries in the HAZ during welding by GBE. GBE increases the frequency of coincidence site lattice (CSL) boundaries in the material so as to improve the intergranular properties, because of strong resistance of CSL boundaries to intergranular deteriorations. The optimum parameters in the thermomechanical-processing brought a very high frequency of CSL boundaries in the high nitrogen austenitic stainless steel. The GBE suppressed the intergranular and cellular nitride precipitation in the HAZ of the high nitrogen austenitic stainless steel during welding.


2004 ◽  
Vol 261-263 ◽  
pp. 1005-1010 ◽  
Author(s):  
Hiroyuki Kokawa ◽  
Masahiko Shimada ◽  
Zhan Jie Wang ◽  
Yutaka S. Sato ◽  
M. Michiuchi

Optimum parameters in the thermomechanical treatment during grain boundary engineering (GBE) were investigated for improvement of intergranular corrosion resistance of type 304 austenitic stainless steel. The grain boundary character distribution (GBCD) was examined by orientation imaging microscopy (OIM). The intergranular corrosion resistance was evaluated by electrochemical potentiokinetic reactivation (EPR) and ferric sulfate-sulfuric acid tests. The sensitivity to intergranular corrosion was reduced by the thermomechanical treatment and indicated a minimum at a small roll-reduction. The frequency of coincidence-site-lattice (CSL) boundaries indicated a maximum at the small pre-strain. The ferric sulfate-sulfuric acid test showed much smaller corrosion rate in the thermomechanical-treated specimen than in the base material for long time sensitization. The optimum thermomechanical treatment introduced a high frequency of CSL boundaries and the clear discontinuity of corrosive random boundary network in the material, and resulted in the high intergranular corrosion resistance arresting the propagation of intergranular corrosion from the surface.


Alloy Digest ◽  
2018 ◽  
Vol 67 (2) ◽  

Abstract Forta H500 is an austenitic stainless steel in which manganese replaces some of the nickel. Its high-nitrogen content adds strength. Grades Forta H800 and H1000 can be derived from the same composition by changing the degree of work hardening. This datasheet provides information on physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming and joining. Filing Code: SS-1278. Producer or source: Outokumpu Stainless AB, Avesta Research Centre.


Sign in / Sign up

Export Citation Format

Share Document