Microstructure and mechanical properties of Ti-6Al-4V-5% hydroxyapatite composite fabricated using electron beam powder bed fusion

2019 ◽  
Vol 35 (2) ◽  
pp. 309-321 ◽  
Author(s):  
César A. Terrazas ◽  
Lawrence E. Murr ◽  
Diego Bermudez ◽  
Edel Arrieta ◽  
David A. Roberson ◽  
...  
Author(s):  
R. Tosi ◽  
E. Muzangaza ◽  
X. P. Tan ◽  
D. Wimpenny ◽  
M. M. Attallah

AbstractProcessing, microstructure, and mechanical properties of the hybrid electron beam powder bed fusion (E-PBF) additive manufacturing of Ti–6Al–4V have been investigated. We explore the possibility of integrating the substrate as a part of the final component as a repair, integrated, or consolidated part. Various starting plate surface conditions are used to understand the joining behavior and their microstructural properties in the bonding region between the plate and initial deposited layers. It is found that mechanical failures mainly occur within the substrate region due to the dominant plastic strains localized in the weaker Ti–6Al–4V substrate. The hybrid concept is successfully proven with satisfactory bonding performance between the E-PBF build and substrate. This investigation improves the practice of using the hybrid E-PBF additive manufacturing technique and provides basic understanding to this approach.


Author(s):  
C. J. J. Torrent ◽  
P. Krooß ◽  
T. Niendorf

AbstractIn additive manufacturing, the thermal history of a part determines its final microstructural and mechanical properties. The factors leading to a specific temperature profile are diverse. For the integrity of a parameter setting established, periphery variations must also be considered. In the present study, iron was processed by electron beam powder bed fusion. Parts realized by two process runs featuring different build plate sizes were analyzed. It is shown that the process temperature differs significantly, eventually affecting the properties of the processed parts.


Sign in / Sign up

Export Citation Format

Share Document