Enhancing mechanical properties and corrosion resistance of nickel-aluminum bronze via hot rolling process

2021 ◽  
Vol 61 ◽  
pp. 186-196
Author(s):  
Yanhua Zeng ◽  
Fenfen Yang ◽  
Zongning Chen ◽  
Enyu Guo ◽  
Minqiang Gao ◽  
...  
2019 ◽  
Vol 2 (2) ◽  
pp. 172-177
Author(s):  
Milka Rante ◽  
Muhammad Syahid ◽  
Onny Sutresman

Propeller is one of the important components of ships and boats that function as motor or boat propulsion. The mechanical properties required in propeller material are high toughness, easy to cast, and good engine capability, as well as good resistance to corrosion and erosion. One of the aluminum alloys that have been widely used in major vessels in propeller systems is the Nickel-aluminum-bronze (NAB) alloy because it has an excellent combination of mechanical properties and corrosion-erosion resistance. Another type of aluminum alloy that is widely used as a machining component is the Al 7075 T651 because it has the highest strength among other aluminum alloys. The mechanical properties of the Al 7075 T651 are directly proportional to the erosion resistance of the propeller which agrees with the pot tester porridge. The higher the value of the erosion propeller failure that occurs also increases with increasing testing rotational speed. For corrosion, a propeller with air testing media at a speed of 1000 rpm which results in significant corrosion products. Keywords: Al 7075 T651, Slurry Pot Tester, Corrosion Erosion


Alloy Digest ◽  
1967 ◽  
Vol 16 (4) ◽  

Abstract PROMET-115N is a heat treatable nickel-aluminum bronze recommended for corrosion resistant, high strength bearings, gears and castings. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Cu-175. Producer or source: American Crucible Products Company.


2021 ◽  
Vol 2 (1) ◽  
pp. 61-77
Author(s):  
Hamid Reza Jafari ◽  
Ali Davoodi ◽  
Saman Hosseinpour

In this work, the corrosion behavior and surface reactivity of as-cast and heat-treated nickel aluminum bronze casting alloy (UNS C95800) in 3.5 wt% NaCl solution is investigated under stagnant and flow conditions. Increasing flow rate conditions are simulated using a rotating disk electrode from 0 to 9000 revolutions per minute (rpm). Optical micrographs confirm the decrease in the phase fraction of corrosion-sensitive β phase in the microstructure of C95800 after annealing, which, in turn, enhances the corrosion resistance of the alloy. Electrochemical studies including open circuit potentiometry, potentiodynamic polarization, and electrochemical impedance spectroscopy are performed to assess the effect of flow rate and heat treatment on the corrosion of samples at 25 and 40 °C in 3.5 wt% NaCl solution. For both as-cast and heat-treated samples, increasing the flow rate (i.e., electrode rotating rate) linearly reduces the corrosion resistance, indicating that the metal dissolution rate is significantly affected by hydrodynamic flow. Increasing the solution temperature negatively impacts the corrosion behavior of the as-cast and heat-treated samples at all flow conditions.


2019 ◽  
Vol 60 (8) ◽  
pp. 1629-1637
Author(s):  
Yuting Lv ◽  
Bingjie Zhao ◽  
Hongbin Zhang ◽  
Chunjian Su ◽  
Bin Nie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document