press hardening steel
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 15)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Sarah Tedesco ◽  
Ming Shi ◽  
Jason Coryell ◽  
Qi Lu ◽  
Jianfeng Wang

Abstract Press hardening steel (PHS) applications predominately use 22MnB5 AlSi coated in the automotive industry. This material has a limited supply chain. Increasing the tensile strength and bendability of the PHS material will enable light-weighting while maintaining crash protection. In this paper, a novel PHS is introduced, and properties are compared to 22MnB5. The new Coating Free PHS (CFPHS) steel, 25MnCr, has increased carbon, with chromium and silicon additions for oxidation resistance. Its ultimate tensile strength (UTS) of 1.7 GPa with bending angle above 55° at 1.4mm thickness improves upon the 22MnB5 grade. This steel is not pre-coated, is oxidation resistant at high temperature, thus eliminating the need for AlSi or shot blasting post processing to maintain surface quality. Microstructural mechanisms used to enhance bendability and energy absorption are discussed for the novel steel. Performance evaluations such as: weldability, component level crush and intrusion testing and e-coat adhesion, are conducted on samples from industrial coils.


Author(s):  
Hendrik Westermann ◽  
Alexander Reitz ◽  
Rolf Mahnken ◽  
Mirko Schaper ◽  
Olexandr Grydin

2021 ◽  
Vol 1157 (1) ◽  
pp. 012012
Author(s):  
S Lu ◽  
S DiCecco ◽  
M Worswick ◽  
C Chiriac ◽  
G Luckey ◽  
...  

Author(s):  
Diego Tolotti de Almeida ◽  
Thomas Gabriel Rossauro Clarke ◽  
João Henrique Corrêa de Souza ◽  
William Haupt ◽  
Milton Sergio Fernandes de Lima ◽  
...  

Author(s):  
Xiaolu Wei ◽  
Zhisong Chai ◽  
Qi Lu ◽  
Jun Hu ◽  
Zhongyi Liu ◽  
...  

2021 ◽  
Vol 1026 ◽  
pp. 59-64
Author(s):  
Hong Liang Liu ◽  
Yu Chen ◽  
Chun Cheng Li ◽  
Lin Guan ◽  
Xiao Nan Wang

The press hardening steel with thick specification has been used as automobile chassis parts. With the increase of the thickness, the cooling rate of the inner core is lower in the conventional process, resulting in a poor harden ability, and the fatigue test is not qualified. In this study, the microstructure of hot forming parts with thick specifications was studied by means of metallographic and micro-hardness testing. The results show that there is a microstructure gradient in the thick hot forming parts, which leads to the uneven strength in the cross section and finally affects the fatigue test results.The finite element analysis method is used to study the cooling rate of the inner core of the hot forming parts. The high hardenability press hardening steel products has been prepared by adjusting the components.


2020 ◽  
Vol 51 (11) ◽  
pp. 5628-5638
Author(s):  
A. Reitz ◽  
O. Grydin ◽  
M. Schaper

Abstract Safety-relevant components in automobiles require materials that combine high strength with sufficient residual ductility and high-energy absorption. A graded thermo-mechanical treatment of the press-hardening steel 22MnB5 with graded microstructure can provide a material with such properties. Different austenitization temperatures, cooling and forming conditions within a sheet part lead to the development of microstructures with mixed phase compositions. To determine the resulting phase contents in such graded processed parts, a large number of dilatometric tests are usually required. With a non-contact characterization method, it is possible to detect local phase transformations on an inhomogeneously treated flat steel specimen. For press-hardening steel after heat treatment and thermo-mechanical processing, correlations between austenitization temperature, hot deformation strain, microstructure, and hardness are established.


Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 853 ◽  
Author(s):  
Hardy Mohrbacher ◽  
Takehide Senuma

Press hardening steel (PHS) is widely applied in current automotive body design. The trend of using PHS grades with strengths above 1500 MPa raises concerns about sensitivity to hydrogen embrittlement. This study investigates the hydrogen delayed fracture sensitivity of steel alloy 32MnB5 with a 2000 MPa tensile strength and that of several alloy variants involving molybdenum and niobium. It is shown that the delayed cracking resistance can be largely enhanced by using a combination of these alloying elements. The observed improvement appears to mainly originate from the obstruction of hydrogen-induced damage incubation mechanisms by the solutes as well as the precipitates of these alloying elements.


Sign in / Sign up

Export Citation Format

Share Document