Stress-controlled fatigue of HfNbTaTiZr high-entropy alloy and associated deformation and fracture mechanisms

Author(s):  
Shuying Chen ◽  
Weidong Li ◽  
Ling Wang ◽  
Tao Yuan ◽  
Yang Tong ◽  
...  
2018 ◽  
Vol 723 ◽  
pp. 79-88 ◽  
Author(s):  
W.P. Li ◽  
X.G. Wang ◽  
B. Liu ◽  
Q.H. Fang ◽  
C. Jiang

Author(s):  
Yu.F. Ivanov ◽  
◽  
V.E. Gromov ◽  
K.A. Osintsev ◽  
S.V. Konovalov ◽  
...  

Using wire-arc additive manufacturing (WAAM)technology in an atmosphere of argon gas a non - equatomic high entropy alloy (HEA) of AlCoCrFeNi system is obtained: Al (35.67±1.34 at%), Ni (33.79±0.46 at%), Fe (17.28±1.83 at%), Cr (8.28±0.15 at%), Co (4.99±0.09 at%). Scanning electron microscopy method revealed that HEA is a polycrystal material having the grain size (4-15) µm with the particles of second phase located along the grain boundaries. Mapping methods showed that grain volumes are enriched in aluminum and nickel, while grain boundaries contain chromium and iron. Cobalt is distributed in the crystal lattice of the resulting HEA quasi-uniformly. It is shown that during tensile tests, the material was destroyed by the mechanism of intra-grain cleavage. The formation of brittle cracks along the boundaries and at the junctions of grain boundaries, i.e., in places containing inclusions of the second phases, is revealed. It was suggested that one of the reasons for the increased brittleness of HEA, is revealed uneven distribution of elements in the microstructure of the alloy and also the presence in the volume of material discontinuities of various shapes and sizes.


2019 ◽  
Author(s):  
Nirmal Kumar ◽  
Subramanian Nellaiappan ◽  
Ritesh Kumar ◽  
Kirtiman Deo Malviya ◽  
K. G. Pradeep ◽  
...  

<div>Renewable harvesting clean and hydrogen energy using the benefits of novel multicatalytic materials of high entropy alloy (HEA equimolar Cu-Ag-Au-Pt-Pd) from formic acid with minimum energy input has been achieved in the present investigation. The synthesis effect of pristine elements in the HEA drives the electro-oxidation reaction towards non-carbonaceous pathway . The atomistic simulation based on DFT rationalize the distinct lowering of the d-band center for the individual atoms in the HEA as compared to the pristine counterparts. This catalytic activity of the HEA has also been extended to methanol electro-oxidation to show the unique capability of the novel catalyst. The nanostructured HEA, properties using a combination of casting and cry omilling techniques can further be utilized as fuel cell anode in direct formic acid/methanol fuel cells (DFFE).<br></div>


Author(s):  
Janez Dolinšek ◽  
Stanislav Vrtnik ◽  
J. Lužnik ◽  
P. Koželj ◽  
M. Feuerbacher

2006 ◽  
Vol 31 (6) ◽  
pp. 723-736 ◽  
Author(s):  
Keng-Hao Cheng ◽  
Chia-Han Lai ◽  
Su-Jien Lin ◽  
Jien-Wei Yeh

2019 ◽  
Author(s):  
Dong Geun Kim ◽  
Yong Hee Jo ◽  
Junha Yang ◽  
Won-Mi Choi ◽  
Hyoung Seop Kim ◽  
...  

2019 ◽  
Author(s):  
V. Soni ◽  
Oleg N. Senkov, PhD ◽  
Jean-Philippe Couzinie, PhD ◽  
Yufeng Zheng, PhD ◽  
Bharat Gwalani, PhD ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document