Using augmented reality to build digital twin for reconfigurable additive manufacturing system

2020 ◽  
Vol 56 ◽  
pp. 598-604 ◽  
Author(s):  
Yi Cai ◽  
Yi Wang ◽  
Morice Burnett
2021 ◽  
Vol 60 ◽  
pp. 176-201
Author(s):  
Yepeng Fan ◽  
Jianzhong Yang ◽  
Jihong Chen ◽  
Pengcheng Hu ◽  
Xiaoyu Wang ◽  
...  

Author(s):  
Syed Mobeen Hasan ◽  
Kyuhyup Lee ◽  
Daeyoon Moon ◽  
Soonwook Kwon ◽  
Song Jinwoo ◽  
...  

2019 ◽  
Vol 109 (03) ◽  
pp. 179-183
Author(s):  
J. Fischer ◽  
P. Springer ◽  
S. Fulga-Beising ◽  
K. Abu El-Qomsan

Das Fraunhofer IPA forscht an Workflows und Methoden für die Herstellung personalisierter Produkte von der Erfassung persönlicher Daten über die Analyse und Modellierung bis hin zur flexiblen, automatisierten Fertigung der Produkte. Der Beitrag beschreibt einen beispielhaften Anwendungsfall: die Herstellung einer personalisierten Brille. Für die nötige Flexibilität in der Fertigung wurde ein vollständig automatisiertes additives Fertigungssystem entwickelt, das im Applikationszentrum Industrie 4.0 des Fraunhofer IPA und des Instituts für Industrielle Fertigung und Fabrikbetrieb IFF der Universität Stuttgart integriert ist.   Fraunhofer IPA examines workflows and methods for the production of personalized products from the acquisition of personal data, analysis and modelling to the flexible, automated production of the products. This paper exemplifies an application using the production of personalized glasses. For this purpose, a fully automated additive manufacturing system was developed to provide the necessary flexibility in manufacturing.


2016 ◽  
Vol 55 (36) ◽  
pp. 9676-9686 ◽  
Author(s):  
Elçin Içten ◽  
Girish Joglekar ◽  
Chelsey Wallace ◽  
Kristen Loehr ◽  
Jennifer Sacksteder ◽  
...  

2021 ◽  
Author(s):  
Zhongyu Zhang ◽  
Zhenjie Zhu ◽  
Jinsheng Zhang ◽  
Jingkun Wang

Abstract With the drastic development of the globally advanced manufacturing industry, transition of the original production pattern from traditional industries to advanced intelligence is completed with the least delay possible, which are still facing new challenges. Because the timeliness, stability and reliability of them is significantly restricted due to lack of the real-time communication. Therefore, an intelligent workshop manufacturing system model framework based on digital twin is proposed in this paper, driving the deep inform integration among the physical entity, data collection, and information decision-making. The conceptual and obscure of the traditional digital twin is refined, optimized, and upgraded on the basis of the four-dimension collaborative model thinking. A refined nine-layer intelligent digital twin model framework is established. Firstly, the physical evaluation is refined into entity layer, auxiliary layer and interface layer, scientifically managing the physical resources as well as the operation and maintenance of the instrument, and coordinating the overall system. Secondly, dividing the data evaluation into the data layer and the processing layer can greatly improve the flexible response-ability and ensure the synchronization of the real-time data. Finally, the system evaluation is subdivided into information layer, algorithm layer, scheduling layer, and functional layer, developing flexible manufacturing plan more reasonably, shortening production cycle, and reducing logistics cost. Simultaneously, combining SLP and artificial bee colony are applied to investigate the production system optimization of the textile workshop. The results indicate that the production efficiency of the optimized production system is increased by 34.46%.


2016 ◽  
Vol 73 ◽  
pp. 66-75 ◽  
Author(s):  
Donghong Ding ◽  
Chen Shen ◽  
Zengxi Pan ◽  
Dominic Cuiuri ◽  
Huijun Li ◽  
...  

2018 ◽  
Vol 38 (12) ◽  
pp. 2313-2343 ◽  
Author(s):  
Daniel R. Eyers ◽  
Andrew T. Potter ◽  
Jonathan Gosling ◽  
Mohamed M. Naim

Purpose Flexibility is a fundamental performance objective for manufacturing operations, allowing them to respond to changing requirements in uncertain and competitive global markets. Additive manufacturing machines are often described as “flexible,” but there is no detailed understanding of such flexibility in an operations management context. The purpose of this paper is to examine flexibility from a manufacturing systems perspective, demonstrating the different competencies that can be achieved and the factors that can inhibit these in commercial practice. Design/methodology/approach This study extends existing flexibility theory in the context of an industrial additive manufacturing system through an investigation of 12 case studies, covering a range of sectors, product volumes, and technologies. Drawing upon multiple sources, this research takes a manufacturing systems perspective that recognizes the multitude of different resources that, together with individual industrial additive manufacturing machines, contribute to the satisfaction of demand. Findings The results show that the manufacturing system can achieve seven distinct internal flexibility competencies. This ability was shown to enable six out of seven external flexibility capabilities identified in the literature. Through a categorical assessment the extent to which each competency can be achieved is identified, supported by a detailed explanation of the enablers and inhibitors of flexibility for industrial additive manufacturing systems. Originality/value Additive manufacturing is widely expected to make an important contribution to future manufacturing, yet relevant management research is scant and the flexibility term is often ambiguously used. This research contributes the first detailed examination of flexibility for industrial additive manufacturing systems.


Sign in / Sign up

Export Citation Format

Share Document