scholarly journals The flexibility of industrial additive manufacturing systems

2018 ◽  
Vol 38 (12) ◽  
pp. 2313-2343 ◽  
Author(s):  
Daniel R. Eyers ◽  
Andrew T. Potter ◽  
Jonathan Gosling ◽  
Mohamed M. Naim

Purpose Flexibility is a fundamental performance objective for manufacturing operations, allowing them to respond to changing requirements in uncertain and competitive global markets. Additive manufacturing machines are often described as “flexible,” but there is no detailed understanding of such flexibility in an operations management context. The purpose of this paper is to examine flexibility from a manufacturing systems perspective, demonstrating the different competencies that can be achieved and the factors that can inhibit these in commercial practice. Design/methodology/approach This study extends existing flexibility theory in the context of an industrial additive manufacturing system through an investigation of 12 case studies, covering a range of sectors, product volumes, and technologies. Drawing upon multiple sources, this research takes a manufacturing systems perspective that recognizes the multitude of different resources that, together with individual industrial additive manufacturing machines, contribute to the satisfaction of demand. Findings The results show that the manufacturing system can achieve seven distinct internal flexibility competencies. This ability was shown to enable six out of seven external flexibility capabilities identified in the literature. Through a categorical assessment the extent to which each competency can be achieved is identified, supported by a detailed explanation of the enablers and inhibitors of flexibility for industrial additive manufacturing systems. Originality/value Additive manufacturing is widely expected to make an important contribution to future manufacturing, yet relevant management research is scant and the flexibility term is often ambiguously used. This research contributes the first detailed examination of flexibility for industrial additive manufacturing systems.

2021 ◽  
Vol 27 (3) ◽  
pp. 636-642
Author(s):  
Qin Qin ◽  
Jigang Huang ◽  
Jin Yao ◽  
Wenxiang Gao

Purpose Scanning projection-based stereolithography (SPSL) is a powerful technology for additive manufacturing with high resolution as well as large building area. However, the surface quality of stitching boundary in an SPSL system has been rarely studied, and no positive settlement was proposed to address the poor stitching quality. This paper aims to propose an approach of multi-pass scanning and a compensation algorithm for multi-pass scanning process to address the issue of poor stitching quality in SPSL systems. Design/methodology/approach The process of multi-pass scanning is realized by scanning regions repeatedly, and the regions can be cured simultaneously because of the very short repeat exposure time and very fast scanning. Then, the poor stitching quality caused by the non-simultaneous curing can be eliminated. Also, a compensation algorithm is designed for multi-pass scanning to reduce the stitching errors. The validity of multi-pass scanning is verified by curing depth test, while the performance of multi-pass scanning as well as proposed compensation algorithm is demonstrated by comparing with that of a previous SPSL system. Findings The results lead to a conclusion that multi-pass scanning with its compensation algorithm is an effective approach to improve the stitching quality of an SPSL system. Practical implications This study can provide advice for researchers to achieve the satisfactory surface finish with SPSL technology. Originality/value The authors proposed a process of multi-pass scanning as well as a compensation algorithm for SPSL additive manufacturing (system to improve the stitching quality, which has rarely been studied in previous work.


2019 ◽  
Vol 26 (2) ◽  
pp. 498-529 ◽  
Author(s):  
Rahul Sindhwani ◽  
Varinder Kumar Mittal ◽  
Punj Lata Singh ◽  
Ankur Aggarwal ◽  
Nishant Gautam

Purpose Many types of research have already investigated the lean, green or agile manufacturing systems in a discrete manner or as combinations of two of them. In today’s competitive scenario, if industry wants to perpetuate its name in the market, then it has to supervene proper thinking and smart approach. Therefore, the combination of lean, green and agile manufacturing systems can provide better and beneficial results. The purpose of this paper is to discern the barriers to the combined lean green agile manufacturing system (LGAMS), understand their interdependence and develop a framework to enhance LGAMS by using total interpretive structural modeling (TISM) and MICMAC (Matriced’ Impacts Croise’s Multiplication Appliquée a UN Classement) Analysis. Design/methodology/approach This paper uses TISM methodology and MICMAC analysis to deduce the interrelationships between the barriers and rank them accordingly. A total of 13 barriers have been identified through extensive literature review and discussion with experts. Findings An integrated LGAMS has been presented that balances the lean, green and agile paradigms and can help supply chains become more efficient, streamlined and sustainable. Barriers are identified while referring to all three strategies to showcase the clear relevance. TISM models the barriers in different levels showcasing direct and important transitive relations. Further, MICMAC analysis distributes the barriers in four clusters in accordance with their driving and dependence power. Research limitations/implications The inferences have been drawn from a model developed on the basis of inputs from a small fraction of the industry and academia and may show variations when considering the whole industry. Practical implications The outcome of this research can contribute to bringing the change to the manufacturing systems used in most developing nations. Also, top managers considering adoption of LGAMS can be cautious of the most influential barriers. Originality/value A TISM-based model of the barriers to an integrated LGAMS has been proposed with evaluation of the influence of the barriers.


2014 ◽  
Vol 4 (3) ◽  
pp. 447-462 ◽  
Author(s):  
Om Ji Shukla ◽  
Gunjan Soni ◽  
G. Anand

Purpose – In the current customer-driven market, the manufacturers have to be highly responsive and flexible to deliver a variety of products. Hence, to meet this dynamic and uncertain market changes, the production system, which enables the manufacturing of such variety of products should be able to meet such diverse, dynamic changes. Hence, selecting a suitable manufacturing system is a key strategic decision for today's manufacturing organization, which needs to survive in these uncertain market conditions. Hence, the purpose of this paper is to present a decision-making model for selecting the best manufacturing system and also discuss the criteria on the basis of which the management can select the same. Design/methodology/approach – A case of small- and medium-sized company is presented, in which the management is deciding to establish a most suitable manufacturing system. To supplement this, a suitable multi-criteria decision-making model (MCDM), the grey approach is used to analyze manufacturing system alternatives based on various decision criteria to arrive a comparative ranking. Findings – An extensive analysis of grey-based decision-making model described grey decision matrix, grey normalized decision matrix, grey weighted normalized decision matrix and grey possibility degrees for three alternatives revealed that lean manufacturing systems was found to be the most suitable manufacturing system among three alternatives for a given case. Research limitations/implications – The same study can be extended by including sub-criteria with main criteria for selection of manufacturing system by utilizing two MCDM techniques such as AHP or ANP with Grey approach. Practical implications – The Grey approach has been discussed in a detailed way and it will be useful for the managers to use this approach as a tool for solving similar type of decision-making problems in their organizations in the future. Originality/value – Although, the problem of selecting a suitable manufacturing system is often addressed both in practice and research, very few reports are available in the literature of Grey-based decision models that demonstrated its application for selecting a suitable manufacturing systems.


2017 ◽  
Vol 28 (5) ◽  
pp. 655-685 ◽  
Author(s):  
Christen Rose-Anderssen ◽  
James Baldwin ◽  
Keith Ridgway

Purpose The purpose of this paper is to critically evaluate the state of the art of applications of organisational systematics and manufacturing cladistics in terms of strengths and weaknesses and introduce new generic cladistic and hierarchical classifications of discrete manufacturing systems. These classifications are the basis for a practical web-based expert system and diagnostic benchmarking tool. Design/methodology/approach There were two stages for the research methods, with eight re-iterative steps: one for theory building, using secondary and observational data, producing conceptual classifications; the second stage for theory testing and theory development, using quantitative data from 153 companies and 510 manufacturing systems, producing the final factual cladogram. Evolutionary relationships between 53 candidate manufacturing systems, using 13 characters with 84 states, are hypothesised and presented diagrammatically. The manufacturing systems are also organised in a hierarchical classification with 13 genera, 6 families and 3 orders under one class of discrete manufacturing. Findings This work addressed several weaknesses of current manufacturing cladistic classifications which include the lack of an explicit out-group comparison, limited conceptual cladogram development, limited use of characters and that previous classifications are specific to sectors. In order to correct these limitations, the paper first expands on previous work by producing a more generic manufacturing system classification. Second, it describes a novel web-based expert system for the practical application of the discrete manufacturing system. Practical implications The classifications form the basis for a practical web-based expert system and diagnostic benchmarking tool, but also have a novel use in an educational context as it simplifies and relationally organises extant manufacturing system knowledge. Originality/value The research employed a novel re-iterative methodology for both theory building, using observational data, producing the conceptual classification, and through theory testing developing the final factual cladogram that forms the basis for the practical web-based expert system and diagnostic tool.


Author(s):  
Yossi Hadad ◽  
Baruch Keren

Purpose – The purpose of this paper is to propose a method to determine the optimal number of operators to be assigned to a given number of machines, as well as the number of machines that will be run by each operator (a numerical partition). This determination should be made with the objective of minimizing production costs or maximizing profits. Design/methodology/approach – The method calculates the machines interference rate via the binomial distribution function. The optimal assignment is calculated by transformation of a partition problem into a problem of finding the shortest path on a directed acyclic graph. Findings – The method enables the authors to calculate the adjusted cycle time, the workload of the operators, and the utility of the machines, as well as the production yield, the total cost per unit, and the hourly profit for each potential assignment of operators to machines. In a case study, the deviation of the output per hour of the proposed method from the actual value was about 2 percent. Practical implications – The paper provides formulas and tables that give machine interference rates through the application of binomial distribution. The practicability of the proposed method is demonstrated by a real-life case study. Originality/value – The method can be applied in a wide variety of manufacturing systems that use many identical machines. This includes tire presses in tire manufacturing operations, ovens in pastry manufacturing systems, textile machines, and so on.


2018 ◽  
Vol 25 (1) ◽  
pp. 280-296 ◽  
Author(s):  
Ram Prakash ◽  
Sandeep Singhal ◽  
Ashish Agarwal

Purpose The research paper presents analysis and prioritization of barriers influencing the improvement in the effectiveness of manufacturing system. The purpose of this paper is to develop an integrated fuzzy-based multi-criteria decision-making (F-MCDM) framework to assist management of the case company in the selection of most effective manufacturing system. The framework helps in prioritizing the manufacturing systems on the basis of their effectiveness affected by the barriers. Design/methodology/approach In this paper, on the basis of experts’ opinion, five barriers have been identified in a brain-storming session. The problem of prioritization of manufacturing system is a multi-criteria decision-making (MCDM) problem and hence is solved by using the F-MCDM approach using dominance matrix. Findings Manufacturing systems’ effectiveness for Indian industries is influenced by barriers. The prioritization of manufacturing systems depends on qualitative factor decision-making criteria. Among the manufacturing systems, leagile manufacturing system is given the highest priority followed by lean manufacturing system, agile manufacturing system, flexible manufacturing system and cellular manufacturing system. Research limitations/implications The selection of an appropriate manufacturing system plays a vital role for sustainable growth of the manufacturing company. In the present work, barriers which influence the effectiveness of manufacturing system have been identified. On the basis of degree of influence of barriers on the effectiveness of the manufacturing system, five alternative manufacturing systems are prioritized. The framework will help the management of the case company to take reasonable decision for the adoption of the appropriate manufacturing system. Practical implications The results of the research work are very useful for the manufacturing companies interested in analyzing the alternative manufacturing systems on the basis of their effectiveness and their sensitivity toward various barriers. The management of Indian manufacturing company will take decision to adopt a manufacturing system whose effectiveness is least sensitive toward barriers. Effectiveness of such manufacturing system will improve with time without having retardation due to barriers. With improved effectiveness of the manufacturing system, the manufacturing company would be able to survive with global competition. The result of the present work is based on the inputs from the case company and may vary for the other manufacturing company. In the present work, only five alternative manufacturing systems and five barriers have been considered. To obtain the better result, MCDM approach with more number of alternative manufacturing systems and barriers might be considered. Originality/value The research work is based on the fuzzy analytic hierarchy process framework and on the case study conducted by the authors. The work carried out is original in nature and based on the real-life case study.


Author(s):  
Reinaldo Belickas Manzini ◽  
Luiz Carlos Di Serio

Purpose This paper offers an approach for outlining the main dimensions surrounding clusters in three areas of knowledge: economic geography, strategic management and operations management, the first being considered its natural field of knowledge. Design/methodology/approach The work was developed using the citation analysis technique as applied to a database of 627 articles and 22,980 citations, taken from 15 important journals in the areas selected. Findings The results proved that the theoretical and conceptual bases are unique to each of the areas studied and that they have few topics in common between them. They are complementary, however, and this facilitates their reconciliation. Research limitations/implications The sample base, despite considering fairly influential periodicals in the areas of knowledge selected, can be considered to be a limitation. Originality/value Common themes and different areas of knowledge surrounding the cluster concept were identified; despite being considered “common”, a more detailed examination of their content reveals very different, but certainly complementary emphases, which makes it possible to reconcile the areas of knowledge.


2020 ◽  
Vol 26 (4) ◽  
pp. 659-667
Author(s):  
Nicholas R. Fry ◽  
Robert C. Richardson ◽  
Jordan H. Boyle

Purpose This paper aims to present a multi-axis additive robot manufacturing system (ARMS) and demonstrate its beneficial capabilities. Design/methodology/approach ARMS was constructed around two robot arms and a fused filament fabrication (FFF) extruder. Quantitative experiments are conducted to investigate the effect of printing at different orientations with respect to gravity, the effect of dynamically changing build orientation with respect to the build tray when printing overhanging features, the effect of printing curved parts using curved, conformal layers. These capabilities are combined to print an integrated demonstrator showing potential practical benefits of the system. Findings Orientation with respect to gravity has no effect on print quality; dynamically changing build orientation allows overhangs up to 90° to be cleanly printed without support structures; printing an arch with conformal layers significantly increases its strength compared to conventional printing. Research limitations/implications The challenge of automatic slicing algorithms has not been addressed for multi-axis printing. It is shown that ARMS could eventually enable printing of fully-functional prototypes with embedded components. Originality/value This work is the first to prove that the surface roughness of an FFF part is independent of print orientation with respect to gravity. The use of two arms creates a novel system with more degrees of freedom than existing multi-axis printers, enabling studies on printing orientation relationships and printing around inserts. It also adds to the emerging body of multi-axis literature by verifying that curved layers improve the strength of an arch which is steeply curved and printed with the nozzle remaining normal to the curvature.


2018 ◽  
Vol 25 (4) ◽  
pp. 1171-1193 ◽  
Author(s):  
Raman Kumar ◽  
Harwinder Singh

Purpose The purpose of this paper is to explore the success factors for the assessment of manufacturing system output. Design/methodology/approach Exploratory factor analysis and second-order confirmatory factor analysis were used to analyze data and test hypotheses, respectively. A total of 36 observed variables were transformed into nine success factors, namely role of management (ROM), technical strength, employee strength, organizational strength (OS), resources (RS), production system, market research, effective planning, and research and development (RD). Findings The finding indicates that only four success factors, namely ROM, RS, OS, and RD, are positively related to all four outputs. Moreover, all nine success factors are positively associated with profit. Research limitations/implications The outcomes of the present work provide meaningful implications for researchers and practitioners as well. Originality/value Earlier studies have laid focus on single output only in the manufacturing system. In the present study, an effort has been made to focus on four output dimensions, namely final product, customer relationship, reputation, and profit, which are further strengthened by incorporating the concept of performance in manufacturing systems.


Author(s):  
S. J. Pavnaskar ◽  
D. Weaver ◽  
J. K. Gershenson

Lean has become a “must-use” philosophy for businesses today. Lean manufacturing focuses on the elimination of waste in manufacturing operations. Similarly, companies have started using lean engineering to eliminate wastes from their engineering processes. Both lean manufacturing and lean engineering yield dramatic improvements in quality, cost, and delivery. However, the philosophy of lean (manufacturing and engineering) revolves around the continuous improvement of existing processes. Costs associated with continuous improvement can be significantly reduced by incorporating “lean” considerations when designing a product, process, or manufacturing system. This is known as design for lean manufacturing (DfLM). DfLM guides the design of a product, process, or a manufacturing system to enable lean operations when in production, just as design for assembly (DFA) guides the design of a product to allow easier assembly during production. Currently, there are no guidelines that would help a product or process designer in considering to lean operations during design. Note that usage of the word “product” in this paper must be interpreted in a literary sense and not as a “widget.” The “product” of a manufacturing engineering process is a complete manufacturing system. In this paper, we consider manufacturing system design and propose a novel set of structured DfLM guidelines for designing a manufacturing system. These guidelines will be a valuable resource for manufacturing engineers to guide manufacturing system design for new products to enable lean operations once the system is in production. DfLM guidelines for system design also will help plant engineers and rapid continuous improvement managers to assess existing manufacturing systems and identify and prioritize improvement efforts. The proposed DfLM guidelines are then validated for accuracy, completeness, and redundancy by using them to evaluate an existing benchmark manufacturing system. The initial DfLM guidelines show promise for use in designing manufacturing systems that are easy to manage, flexible, safe, build quality into the products, optimize material flow, fully utilize all resources, maximize throughput, and continuously produce what the customer wants just in time. Similar guidelines can be proposed for product and process design to further enhance the efficiency of operations and reduce the overhead of continuous improvement efforts.


Sign in / Sign up

Export Citation Format

Share Document