Modelling the startup of machine tools for energy efficient multi-sleep control policies

2021 ◽  
Vol 60 ◽  
pp. 337-349
Author(s):  
Nicla Frigerio ◽  
Andrea Matta
2019 ◽  
Vol 109 (01-02) ◽  
pp. 72-80
Author(s):  
M. Weber ◽  
M. Helfert ◽  
F. Unterderweide ◽  
E. Abele ◽  
M. Weigold

Im Rahmen des vom Bundesministerium für Wirtschaft und Energie (BMWi) geförderten Projekts „ETA-Fabrik“ am Institut für Produktionsmanagement, Technologie und Werkzeugmaschinen (PTW) der Technischen Universität Darmstadt konnte die Energieeffizienz von Motorspindeln als Hauptenergieverbraucher von Werkzeugmaschinen durch Einsatz der Synchronreluktanztechnologie gesteigert werden. In der Konsequenz ergeben sich weitere Energieeinsparpotenziale und produktionstechnische Vorteile durch eine gesamtenergetische Betrachtung der Werkzeugmaschine mit Kühlsystem und intelligentem Spindelthermomanagement.   As part of the ‘ETA-Fabrik’ project funded by the BMWi, the Institute of Production Management, Technology and Machine Tools (PTW) of the TU Darmstadt has used synchronous reluctance drives to increase the energy efficiency of motor spindles as main energy consumers of machine tools. Subsequently, new opportunities for energy savings and advantages for the manufacturing process arise by taking a holistic view on machine tools including the cooling system, proposing an intelligent spindle thermal management.


Author(s):  
Zhendong Shang ◽  
Dong Gao ◽  
Zhipeng Jiang ◽  
Yong Lu

The evaluation of the energy performance of spindle systems with a proper metric is extremely important for energy-efficient machine tools. However, there is a lack of appropriate index to achieve this evaluation. To close this gap, the additional power requirement, which is defined as the discrepancy between the material removal power and the power gap of the spindle system from air-cutting state to cutting state, was proposed as a new indicator based on a detailed power flow analysis. The additional power requirement universally exists in machining and results from the efficiency and power losses of the system, which makes it a good energy performance indicator candidate. A theoretical model for the additional power requirement of spindle systems was built and verified in a lathe machine, through which two causes of additional power requirement were pointed: less than 100% efficiency throughout the system and efficiency change of the spindle motor under a dynamic load and a variable speed. The first cause has a positive effect on the additional power requirement, whereas the second one generally plays a negative role. Furthermore, the additional power requirement can be negative because of the negative effect, which is different from previous studies. The close relation between the additional power requirement and the energy performance of the spindle is demonstrated by an in-depth analysis. This work is an important building block for energy-efficient machine tools.


Sign in / Sign up

Export Citation Format

Share Document